

On Some Fixed Point Theorems in Dislocated Quasi b-Metric Spaces

L. Vijaya Kumar¹ and K.P.R. Sastry²

1. Dept. of Mathematics, Dr.B.R.Ambedkar University, Srikakulam 2. Dept. of Mathematics, Andhra University, Visakhapatnam

Abstract: In this paper, we establish the two fixed point theorems in dislocated quasi b-metric spaces. Incidentally we have obtained the results of Sastry [12] and Aage [13] as corollaries.

Keywords: S-metric Space, quasi metric spaces, quasi-b-metric spaces, dislocated quasi-b-metric spaces, Banach contraction.

Classification: 54H25, 47H10.

1. Introduction

The concept of metric space was introduced Frechet [1] in 1906. The concept of *b*-metric space was introduced by Bakhtin [2] and was used by Czerwik [3] to study contraction mapping in b-metric space. The concept of dislocated quasi-b-metric space is introduced by F.M.Zeyada [4] and proved some fixed theorems on it.For more works we refer [14,15,16,17,18]. Several researchers worked on generalized metric spaces andproved some fixed point theorems on generalized metric spaces [19,20,21,22]. In this paper, we present some new fixed point theorems in dislocated quasi-bmetric spaces.

2. Preliminaries

Definition 2.1(Zeyada[4]): A metric on a non empty set X is a function D: $X \times X \rightarrow [0, \infty)$ such that for all x, y, z $\in X$, the following conditions hold:

(i) $D(x,y) = 0 = D(y,x) \Rightarrow x = y$, for all $x, y \in X$

(ii) D(x, y) = D(y, x), for all $x, y \in X$

(iii) $D(x, y) \leq D(x, z) + D(z, y)$, for all $x, y, z \in X$.

The pair (X, D) is called dislocated metric space.

Definition 2.2(Zeyada [4]): A quasi metric on a non empty set *X* is a function $D: X \times X \rightarrow [0, \infty)$ such that for all x, y, z \in X, the following conditions hold:

(i) D(x, x) = 0 for all $x, y \in X$

(ii) $D(x, y) = 0 = D(y, x), \Rightarrow x = y$, for all $x, y \in X$

(iii) $D(x, y) \leq D(x, z) + D(z, y)$, for all $x, y, z \in X$.

The pair (X, D) is called quasi-metric space.

Definition 2.3(Shah [5]): Let *X* be a non empty set. Let D: $X \times X \rightarrow [0, \infty)$ be a mapping and $k \ge 1$ be a constant such that:

(i) $D(x, y) = 0 = D(y, x), \Rightarrow x = y$, for all $x, y \in X$

(ii) $D(x, y) \le k(D(x, z) + D(z, y))$, for all $x, y, z \in X$.

The pair (X, D) is called quasi-*b*-metric space.

Definition 2.4(Alghamdi [6]): Let X be a non empty set. Let D: $X \times X \rightarrow [0, \infty)$ be a mapping and $k \ge 1$ be a constant such that:

(i) $D(x, y) = 0 \Rightarrow x = y$, for all $x, y \in X$

(ii) D(x, y) = D(y, x), for all $x, y \in X$

(iii) $D(x, y) \le k(D(x, z) + D(z, y))$, for all $x, y, z \in X$.

The pair (X, D) is called *b*-metric like space.

Definition 2.5(Chakkrid [7]) Let *X* be a non empty set. Let D: $X \times X \rightarrow [0, \infty)$ be a mapping and $k \ge 1$ be a constant such that:

(i) D(x, y) = 0 = D(y, x), $\Rightarrow x = y$, for all $x, y \in X$

(ii) $D(x,y) \le k(D(x,z) + D(z,y))$, for all $x, y, z \in X$.

The pair (X, D) is called dislocated quasi-*b*-metric space or in short *dqb*-metric space.

Note2.6: The constant k is called coefficient of (X, D). It is clear that b-metric spaces, quasi-*b*-metric spaces and *b*-metric like spaces are *dqb*-metric spaces but converse is not true.

Example 2.7: Let $X = \mathbb{R}^+$ and for p > 1, D: $X \times X \rightarrow [0, \infty)$ defined by $D(x, y) = |x - y|^p + |x|^p$ for all x, y, $z \in X$. The (X, D) n is *dqb*-metric space with $k = 2^p$. But (X, D) is not b-metric space and also not dislocated quasi metric space.

Example2.8 : Let $X = \mathbb{R}^+$ and for p>1, D: $X \times X \rightarrow [0, \infty)$ defined by $D(x, y) = |2x - y|^2 + |2x + y|^2$ for all x, y, $z \in X$. Then (X, D) is *dqb*-metric space with k = 2. But (X, D) is not *b*-metric space.

Definition2.9 (Chakkrid[7]) Let (X, D) be a *dqb*metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$. We say that $\{x_n\}$ is *dqb*-converges to x if $\lim_{n\to\infty} D(x_n, x) = 0 = \lim_{n\to\infty} D(x, x_n)$. Here x is called a *dqb*-limit of $\{x_n\}$ and written as $\{x_n\} \to x$.

Definition 2.10 (Chakkrid [7]) Let (X, D)be a dqbmetric spaces. Let $\{x_n\}$ be a sequence in X. We say that $\{x_n\}$ is *dqb*-Cauchy sequence if $\lim_{n,m\to\infty} D(x_n, x_m) = 0 = \lim_{n,m\to\infty} D(x_m, x_n).$

Definition 2.11 (Chakkrid [7]) A dqb-metric spaces (X, D) is said to be dqb-complete if every dqb-Cauchy sequence in it is dqb-convergent in X.

Lemma2.12 (Chakkrid [7])Every subsequence of a *dqb*-convergent sequence in a *dqb*-metric space (X, D) is a *dqb*-convergent sequence. **Lemma2.13 (Chakkrid [7])**Every subsequence of a *dqb*-Cauchy sequence in a *dqb*-metric space (X, D) is a *dqb*-convergent sequence.

Lemma2.14 (Chakkrid [7])If (X, D) is a *dqb*metric space then a function $f: X \to X$ is continuous if and only if $x_n \to x$ then $fx_n \to fx$.

Lemma2.15 (Chakkrid [7]) Limit of a *dqb*-convergent sequence in *dqb*-metric space is unique.

Lemma2.16 (Chakkrid [7]):Let (X, D) be a *dqb*metric space and $\{x_n\}$ be a sequence in it such that, $D(x_{n,x_{n+1}}) \le \alpha D(x_{n-1},x_n), n = 1,2,3...$ and $0 \le \alpha < 1, \alpha \in [0,1)$ then $\{x_n\}$ is a Cauchy sequence in X.

Lemma2.17 (Chakkrid [7]): If x is a limit point of some dqb-convergent sequence in a dqb-metric space (X, D)then D(x, x) = 0

Lemma2.18 (Chakkrid [7]): Every *dqb*-convergent sequence in a *dqb*-metric space (X, D) is *dqb*-Cauchy sequence.

Definition2.19 (Jungck[8]) Let f and g be self maps of a set X. If w=fx=gx for some $x \in X$, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g.

Definition2.20(Jungck [8])Let f and g be self maps of a set X. Then f and g are said to be weakly compatible if they commute at their coincidence point.

Lemma2.21 (Abbas [9]):Let f and g are weakly compatible self maps of a set X. If f and g have unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g.

Definition2.22(Chakkrid[7])Let $f: X \to X$ be a self mapping of a set X, f is said to be sub sequentially convergent if for every sequence $\{x_n\}$ if fx_n is dqb-convergent then $\{x_n\}$ has a dqb-convergent subsequence in X.

Definition2.23(Chakkrid [7]) Let $f: X \to X$ be a self mapping of a set *X*, *f* is said to be sequentially convergent if for every sequence $\{x_n\}$ if fx_n is *dqb*-convergent then $\{x_n\}$ is also *dqb*-convergent in *X*.

Definition2.24 (Samet [10]) Let *T* be a self on a set *X*, and $\alpha: X \times X \to [0, \infty)$ be a function. We say that *T* is α -admissible mapping, if $x, y \in X$ then $\alpha(x, y) \ge 1 \implies \alpha(Tx, Ty) \ge 1$

Definition2.25 (Jose [11]) Let (X, D) be a *dqb*metric space and $T, S: X \to X$ be two mappings then the mapping *S* is called *T*-Banach contraction if $\exists \alpha \in [0,1) \ni D(TSx, TSy) \le \alpha D(Tx, Ty)$ for all $x, y \in X$

Definition 2.26 (Jose [11])Let (X, D) be a *dqb*metric space and $T, S: X \to X$ be two mappings then the mapping S is called T-Kannan contraction if $\exists \alpha \in [0, \frac{1}{2})$ such that

 $D(TSx, TSy) \le \alpha [D(Tx, TSx) + D(Ty, TSy)], for all x, y \in X$

Definition 2.27(Sastry [12]): Let (X, D)be a *dqb*metric space and $T, S: X \to X$ be two mappings then the mapping S is called $T\phi$ – contraction if there exists altering distance function ϕ such that $D(TSx, TSy) \le \phi D(Tx, Ty)$ for all $x, y \in X$.

3. Main Results

Theorem 3.1(Sastry [12])Let (X, D) be a dqbcomplete metric space and $f, g: X \to X$ be self mappings satisfying the inequality $D(fx, fy) \le \phi(D(gx, gy))$, for all $x, y \in X$ where ϕ is altering distance function and $\phi(t) < \frac{t}{t}$ if t > 0, k >1. If $f(X) \subseteq g(X)$ and g(X) is dqb-complete subspace of X then f and g have unique point of coincidence in X. In addition if f and g are weakly compatible, then f and g have common unique fixed point in X.

Corollary 3.2(Aage [13]):et (X, D) be a dqbcomplete metric space and $f, g: X \to X$ be self mappings satisfying the inequality $D(fx, fy) \leq \alpha(D(gx, gy))$, for all $x, y \in X$ where $\alpha \in$ [0,1) such that $\alpha k \leq 1$ and k is coefficient of (X, D). If $f(X) \subseteq g(X)$ and g(X) is dqb-complete subspace of X, then f and g have unique point of coincidence in X. In addition if f and g are weakly compatible, then f and g have common unique fixed point in X.

Lemma 3.3(Sastry [12]) If $x_n \to x$ then D(x, x) = 0.

Proof:
$$D(x, x) \le kD(x, x_n) + kD(x_n, x) \rightarrow 0$$

Therefore D(x, x) = 0.

Now we state and prove our main results

Theorem 3.4: Let (X, D) be a dqb-complete metric space and $f, g: X \to X$ be self mappings satisfying the inequality $D(fx, fy) \leq \phi(max\{D(fx, gx), D(fy, gy)\}), for all x, y \in X$ where ϕ is altering distance function and $\phi(t) < \frac{t}{k}$, if t > 0, k > 1. If $f(X) \subseteq g(X)$ and g(X) is

dqb-complete subspace of X, then f and ghave unique point of coincidence in X. In addition if fand g are weakly compatible, then f and ghave common unique fixed point in X.

Proof:

Let x_0 be any arbitrary point in *X* As $f(X) \subseteq g(X)$

We can choose that $x_1 \in X \ni f x_0 = g x_1$

Again we can choose $x_2 \in X \ni fx_1 = fx_2$

Repeating in the same manner, for $x_n \in X$

We can choose
$$x_{n+1} \in X \ni fx_n = gx_{n+1}$$
 for $n = 0, 1, 2, \dots$

Now consider $D(gx_{n+1}, gx_n) = D(fx_n, fx_{n-1}) \le \phi(max\{D(fx_n, gx_n) + D(fx_{n-1}, gx_{n-1})\}$

$$= \phi(\max\{D(gx_{n+1}, gx_n) + D(gx_n, gx_{n-1})\})$$

$$< \frac{1}{k}\max\{D(gx_{n+1}, gx_n) + D(gx_n, gx_{n-1})\}$$

Therefore

 $k D(gx_{n+1}, gx_n) \le max\{D(gx_{n+1}, gx_n) + D(gx_n, gx_{n-1})\}$

If
$$D(gx_{n+1}, gx_n) > D(gx_n, g_{n-1})$$

Then $k D(gx_{n+1}, gx_n) \le D(gx_{n+1}, gx_n)$

Which is a contradiction?

So
$$D(gx_{n+1}, gx_n) < D(gx_n, g_{n-1})$$

$$k D(gx_{n+1}, gx_n) \le D(gx_n, gx_{n-1})$$

$$D(gx_{n+1}, gx_n) \leq \frac{1}{k}D(gx_n, gx_{n-1})$$

By lemma 4.3.3, $\{x_n\}$ is dqb-Cauchy sequence in X.

Since g(X) is dqb-complete subspace of *X*.

So $\exists v \in g(X) \ni gx_n \rightarrow v as n \rightarrow \infty$

Since $v \in g(X)$ we can find $u \in X \ni gu = v$.

Now $D(gx_n, fu) = D(fx_{n-1}, fu)$

$$\leq \phi(\max\{D(fx_{n-1},gx_{n-1})+D(fu,gu)\})$$

$$= \phi(max \{ D(gx_n, gx_{n-1}) + D(fu, gu) \})$$

 $D(v, fu) \leq \phi(max\{D(v, v) +$

Therefore D(fu, v)})

$$\leq \phi(D(fu, v)))$$

$$D(v,fu) < \frac{1}{k}D(fu,v)$$

Similarly $D(fu, v) < \frac{1}{k}D(v, fu)$

Therefore
$$D(v, fu) < \frac{1}{k}D(fu, v) \le \frac{1}{k^2}D(v, fu)$$

Which is a contradiction always.

Therefore D(v, fu) = 0 and D(fu, v) = 0

$$fu = v$$

gu = v

fu = gu = v

This shows that u is a point of coincidence of f and g in X

Now we claim that this point of coincidence of f and g in X is unique.

On the contrary we assume that there exist $w \in X$ such that fw = gw

Now $D(gu, gw) = D(fu, fw) \le \phi(max\{D(fu, gu), D(fw, gw)\})$

$$\leq \phi(max\{D(u,u), D(fw,gw)\})$$
$$\leq \phi(D(fw,gw))$$
$$\leq \frac{1}{k}D(fw,gw)$$
$$\leq \frac{1}{k}[kD(fw,fu) + kD(fu,gw))$$

Therefore D(gu, gw) = D(fw, fu) + D(fu, gw)

$$D(fw,fu)=0$$

Therefore D(gu, gw) = 0

Similarly D(gw, gu) = 0

Thus D(gu, gw) = D(gw, gu) = 0

Therefore gu = gw and point of coincidence of f and g in X is unique.

Hence by the lemma 4.2.21 f and g unique common fixed point in X

Corollary 3.5 (Aage [13]):Let (X, D) be a *dqb*complete metric space and $f, g: X \to X$ be self mappings satisfying the inequality $D(fx, fy) \leq \alpha [D(fx, gx) + D(fy, gy)]$, for all $x, y \in X$ where $\alpha \in [0, 1/2)$ such that $k \frac{\alpha}{1-\alpha} < 1$ and k is coefficient of (X, D). If $f(X) \subseteq g(X)$ and g(X) is *dqb*-complete subspace of X, then f and ghave unique point of coincidence in X. In addition if fand gare weakly compatible, then f and ghave common unique fixed point in X.

Theorem3.6 (Sastry[12]): Let (X, D) be a *dqb*complete metric space with coefficient k > 1. Let $f, T: X \rightarrow X$ be self-mappings such that T is oneone, T(X) is closed and f is $T\phi$ -contraction then f has unique fixed point.

Corollary 3.7 (Aage[13]): Let (X, D) be a *dqb*complete metric space with coefficient $k \ge 1$. Let $f, T: X \to X$ be self-mappings such that T is continuous, one-one and f is continuous TBanach contraction with $k\alpha \le 1$. If T is *dqb*-subsequentially convergent then f has unique fixed point in X.

Corollary 3.8 (Sastry[12]): Let (X, D) be a *dqb*-complete metric space with coefficient $k \ge 1$. Let

 $f,T:X \rightarrow X$ be self-mappings satisfying *T* is oneone, T(X) is closed and *f* is *T*-Kannan contraction then *f* has unique fixed point.

Corollary3.9 (Aage[13]):Let (X,D) be a *dqb*complete metric space with coefficient $k \ge 1$. Let $f,T:X \to X$ be self-mappings such that *T* is continuous, one-one and *f* is continuous *T*Banach contraction *T* –Kannan contraction with $k\alpha \le 1$. If *T* is *dqb*-sub-sequentially convergent then *f* has unique fixed point.

Now we state and prove another main result

Theorem 3.10:Let (X, D) be a dqb-complete metric space with coefficient $k \ge 1$. Let $f: X \to X$ where $\alpha_2 = max\{D(x_1, x_2), D(x_1, x_2)\}$ where $\alpha_3 \le \phi(\alpha_2) \le \phi^2(\alpha_1)$ $\phi\left(max\left\{D(x, y), D(fx, x), D(y, fy), \frac{D(x, fy) + D(fx, y)}{2}\right\}\right) \forall x, y \in \mathbb{N}$ X where ϕ is altering distance function. Then f has In general $\alpha_n \to 0$ as $n \to \infty$ unique fixed point in X.

Proof:

Let $x_0 \in X$ Define $\{x_n\}$ by $x_1 = fx_0, x_2 = fx_1, \dots, x_n = fx_{n-1}, x_{n+1} = fx_n, \dots, n = 0, 1, 2, \dots$

Consider

 $D(x_1, x_2) = D(fx_0, fx_1) \le \phi\left(\max\left\{D(x_0, x_1), D(fx_0, x_0), D(x_1, fx_1), \frac{D(x_0, fx_1) + D(fx_0, x_1)}{2}\right\}\right)$

$$=\phi(max\{D(x_0,x_1),D(x_1,x_0),D(x_1,x_2),\frac{D(x_0,x_1)+D(x_1,x_1)}{2}\})$$

$$\leq \phi(max\{D(x_{0},x_{1}),D(x_{1},x_{0})\}) = \phi(\alpha_{1})$$

where
$$\alpha_1$$

 $max\{D(x_0, x_1), D(x_1, x_0)\}$

=

$$D(x_2, x_1) = D(fx_1, fx_0)$$

$$\leq \phi(max\{D(x_1, x_0), D(fx_1, x_1), D(x_0, fx_0), \frac{D(x_1, fx_0) + D(fx_1, x_0)}{2}\})$$

$$- \phi(max\{D(x_1, x_0), D(x_2, x_1), D(x_0, x_1), \frac{D(x_1, x_1) + D(x_2, x_0)}{2}\})$$

$$\leq \phi(max\{D(x_1, x_0), D(x_0, x_1)\})$$

 $= \phi (\alpha_1) \quad \text{where} \\ \alpha_1 = max\{D(x_0, x_1), D(x_1, x_0)\}$

 $D(x_2, x_3) = D(fx_1, fx_2)$ $\leq \phi(max\{D(x_1, x_2), D(fx_1, x_1), D(x_2, fx_2), \frac{D(x_1, fx_2) + D(fx_1, x_2)}{2}\})$ $= \phi(max\{D(x_1, x_2), D(x_2, x_1), D(x_2, x_3)\})$ $\leq \phi(max\{D(x_1, x_2), D(x_2, x_1)\}) = \phi(\alpha_2)$ where $\alpha_2 = max\{D(x_1, x_2), D(x_2, x_1)\}$ $D(x_3, x_2) \leq$ similarly $\phi (max\{D(x_2, x_1), D(x_1, x_2)\}) = \phi (\alpha_2)$ where $\alpha_2 = max\{D(x_1, x_2), D(x_2, x_1)\}$ Therefore $\alpha_2 \leq \phi(\alpha_1)$ where $\alpha_2 = max\{D(x_1, x_2), D(x_2, x_1)\}$ In general $\alpha_n \rightarrow 0$ as $n \rightarrow \infty$ Therefore $\alpha_{n+1} \leq \phi^n(\alpha_1) \rightarrow as n \rightarrow \infty$ Therefore $\alpha_n \to 0$ as $n \to \infty$ $max\{D(x_{n-1}, x_n), D(x_n, x_{n-1})\} \rightarrow 0 \text{ as } n \rightarrow \infty$ $D(x_{n-1}, x_n) \rightarrow 0 \text{ as } n \rightarrow \infty$ $D(x_n, x_{n-1}) \rightarrow 0 \text{ as } n \rightarrow \infty$ Consider for $m, n \in N$, n > m, m = n + sNow $D(x_{n+1}, x_n) = D(fx_n, fx_{n-1}) \le$ $\phi(max\{D(x_n, x_{n-1}), D(fx_n, x_n), D(x_{n-1}, fx_{n-1}), \frac{D(x_n, fx_{n-1}) + D(x_{n-1}, fx_n)}{2}\})$ $=\phi(max\{D(x_n, x_{n-1}), D(x_{n+1}, x_n), D(x_{n-1}, x_n), \frac{D(x_n, x_n) + D(x_{n-1}, x_{n+1})}{2}\})$ $= \phi(max\{D(x_n, x_{n-1}), D(x_{n-1}, x_n)\}) \} \setminus$ Now $D(x_n, x_{n+1}) = D(fx_{n-1}, fx_n) \le$ $\phi(\max\{D(x_{n-1},x_n),D(fx_{n-1},x_{n-1}),D(x_n,fx_n),\frac{D(x_{n-1},fx_n)+D(x_n,fx_{n-1})}{2}\})$

$$= \phi(max\{D(x_{n-1}, x_n), D(x_n, x_{n-1}), D(x_n, x_{n+1})\})$$

$$= \phi(max\{D(x_{n-1}, x_n), D(x_n, x_{n-1})\})$$

$$D(x_{n+2}, x_n) \le k D(x_{n+2}, x_{n+1}) + k D(x_{n+1}, x_n)$$
$$\le k \alpha_{n+1} + k \alpha_n$$
$$\le k \phi^n(\alpha_1) + k \phi^{n-1}(\alpha_1)$$

 $D(x_n, x_{n+2}) \leq k D(x_n, x_{n+1}) + k D(x_{n+1}, x_{n+2})$ $\leq k \alpha_n + k \alpha_{n+1}$ $\leq k\phi^{n-1}(\alpha_1) + k\phi^n(\alpha_1)$ $D(x_{n+3}, x_n) \leq k D(x_{n+2}, x_{n+2}) + k D(x_{n+2}, x_n)$ $\leq k \alpha_{n+2} + k \left(k \phi^n(\alpha_1) + k \phi^{n-1}(\alpha_1) \right)$ $\leq k\phi^{n+1}(\alpha_1) + k^2\phi^n(\alpha_1) + k^2\phi^{n-1}(\alpha_1)$ $< k^2 \phi^{n+1}(\alpha_1) + k^2 \phi^n(\alpha_1) + k^2 \phi^{n-1}(\alpha_1)$ $=k^{2}\frac{\alpha_{1}}{k^{n+1}}+k^{2}\frac{\alpha_{1}}{k^{n}}+k^{2}\frac{\alpha_{1}}{k^{n-1}}$ $=\frac{\alpha_1}{k^{n-1}}+\frac{\alpha_1}{k^{n-2}}+\frac{\alpha_1}{k^{n-3}}$ $D(x_n, x_{n+3}) \leq k D(x_n, x_{n+2}) + k D(x_{n+2}, x_{n+3})$ $\leq k \left(k \phi^{n-1}(\alpha_1) + k \phi^n(\alpha_1) \right) + k \alpha_{n+2}$ $\leq k^2 \phi^{n-1}(\alpha_1) + k^2 \phi^n(\alpha_1) + k \phi^{n+1}(\alpha_1)$ $< k^2 \phi^{n-1}(\alpha_1) + k^2 \phi^n(\alpha_1) + k^2 \phi^{n+1}(\alpha_1)$ $=k^{2}\frac{\alpha_{1}}{k^{n-1}}+k^{2}\frac{\alpha_{1}}{k^{n}}+k^{2}\frac{\alpha_{1}}{k^{n+1}}$ $=\frac{\alpha_1}{k^{n-3}}+\frac{\alpha_1}{k^{n-2}}+\frac{\alpha_1}{k^{n-1}}$

Therefore $D(x_{n+s}, x_n) \le k^{s-1}\phi^{n-1}(\alpha_1) + k^{s-3}\phi^{n+1}(\alpha_1) + \dots + k\phi^{n+s-3}(\alpha_1)$

Therefore $D(x_n, x_{n+s+1}) \le k^s \phi^{n-1}(\alpha_1) + k^{s-1} \phi^n(\alpha_1) + k^{s-2} \phi^{n+1}(\alpha_1) + \dots + k \phi^{n+s-2}(\alpha_1)$

Therefore $D(x_{n+s}, x_n) \le \alpha_1 \left[\frac{1}{k^{n-s}} + \frac{1}{k^{(n-s)+1}} + 1kn^{-s+2+\dots+1kn-2+1kn-1} \rightarrow 0 \text{ as } n \rightarrow \infty \right]$

Therefore $\{y_n\}$ is *dqb*-cauchy sequence in *X*.

Therefore $\exists v \in X \ni x_n \to v$

Now $D(fx_n, fv) = D(x_{n+1}, fv) \le \phi(max\{D(x_n, v), D(fx_n, x_n), D(v, fv), \frac{D(x_n, fv) + D(fx_n, v)}{2}\})$

 $= \phi(max\{D(x_n, v), D(x_{n+1}, v), D(v, fv)\})$

Letting $n \to \infty$

$$D(v, fv) \le \phi(\max\{D(v, v), D(v, v), D(v, fv)\})$$
$$= \phi(\max\{D(v, v), D(v, fv)\})$$

Similarly $D(fv,v) \le \phi(max\{D(v,v), D(v,v), D(fv,v)\})$

Since $x_n \to v \Rightarrow D(v,v) = 0$

Therefore D(fv, v) = 0

Therefore
$$D(v, fv) = 0$$

Therefore fv = v

v is a fixed point of f

Now we prove that fixed point of f is unique.

Assume that $w \in X$ is another fixed point.

$$i.e fw = w$$

Now $D(v, w) = D(fv, fw) = \phi(max\{D(v, w), D(fv, v), D(w, fw), \frac{D(v, fw) + D(fv, w)}{2}\})$

 $\leq \phi(max\{D(v,w),D(v,v),D(w,w)\})$

By lemma we get D(v, w) = 0

Similarly D(w, v) = 0

v = w.

Corollary 3.11(Aage [13]):Let (X, D) be a *dqb*complete metric space with coefficient $k \ge 1$. Let $f: X \to X$ be self-mapping satisfying $D(fx, fy) \le \alpha (D(x, y), D(fx, x), D(y, fy)) \forall x, y \in X$ where $\alpha \in [0,1)$ such that $k\alpha \le 1$. Then *f* has unique fixed point in *X*.

Conclusion:

Finally this article can be concluded with the following observations. The purpose of this paper to obtain some new fixed point theorems in dislocated quasi b- metric space was fulfilled. Incidentally we have obtained the results of Sastry [12] and Aage [13] as corollaries.

Conflict of interest

The authors declare that there is no conflict of interest.

References

- [1] Frechet., Sur quelques points duo calculfonctionel,.RendicontidelCircoloMahe maticodi. Palermo. 22: 1-74, 1906.
- [2] I.A. Bakhtin., The contraction mapping principle in quasimetric spaces, Funct. Anal., UlianowskGos. Ped. Inst., 30 (1989), 26-37.
- [3] S.Czerwik., Contraction mappings in \$b\$metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5-11.
- [4] F.M.Zeyada, GH Hassan and MA Ahmed., A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasimetric spaces, The Arabian J.Sci. Engg.,31(1A)(2006),111-114.
- [5] Hussain, N.Shah, M. H., KKM mappings in cone \$b\$-metric spaces, Comput. Math. Appl. 62 (2011), 1677-1684.
- [6] M. A. Alghamdi, N. Hussain, and P. Salimi., Fixed point and coupled fixed point theorems on \$b\$-metric-like spaces, Journal of Inequalities and Applications, vol. 2013, article 402, 2013.
- [7] ChakkridKlin-Eam and CholatisSuanoom., Dislocated quasi-b-metric spaces and fixed point theorem for cyclic contractions, Fixed point theory and applications, (2015) 2015:74,DOI 10.1186/s13663-015-0325-2.
- [8] Jungck and B E Rhoads., Fixed point for set valued functions without continuity, Indian J.Pure.Appl.29(3), (1998),227-238.
- [9] M Abbas and G Jungck., Common fixed point results for non commuting mappings without continuity in cone metric spaces, J.Math. Anal. Appl. bf341(2008),416-420.
- [10] B.Samet,C.Vetro and P.Vetro, Fixed point theorem for \$\alpha-\psi\$ contractive type mappings, Nonlinear Anal.,75(2012),2154-2165.

- [11] Jose R. Morales, Edixon Rojas., T-Zamfirescu and T-weak contraction mapping on cone metric spaces, arXiv:0909[math.FA].
- [12] K.P.R. Sastry, L.V. Kumar., Some fixed point theorems in dislocated quasi \$b\$metric spaces, International Journal of Advances in Mathematics Volume 2019, Number 1, Pages 72-82, 2019, ISSN 2456-6098.
- [13] CT Aage and PG Golhare., On fixed point theorems in dislocated quasi \$b\$-metric spaces, Advance in Mathematics Vol.2016, Number 1, Pp 55-70, 2016.
- [14] K.P.R. Sastry, K.K.M. Sarma, P.K Kumari, Fixed point theorems for ψ-contractions and φ-contractions in quasi S- metric spaces.IJMA-9(12)Dec-2018,1-14,ISSN-2229-5046.
- [15] S.Sedghi,
 - A.Gholidahne,T.Dosenoviv,J.Esfahani,S.Ran denovic: Common fixed point of four maps in S_b -metric spaces. J.LinearTopo.Algebra 5(2),93-104(2016).
- [16] S.Sedghi, N.Shobe, H.Zhou: A Common fixed point theorem in D*-metric space. Fixed point Theory Appl:(2007)-1-13.
- [17] S.Sedghi,K.P.RRao, N.Shobe: Common fixed point theorem for six weakly compatible mappings in D*-metric spaces, International J.Math. Math Sci.6(2007)225-237.
- [18] K.P.R.Sastry, L.V.Kumar, PS Kumar, Common fixed point theorems for F-Contractions on generalized metric spaces, Advance in Mathematics Vol.2018, Number 1, Pp 44-49, 2018.
- [19] S.Sedghi,N.Shobe, T.Posenovic:Fixed point results in S-metric spaces, Non linear functional analysis applications.20(1)55-67(2015).
- [20] K.P.R. Sastry, K.K.M. Sarma, P.K Kumari, Sunithachoudari, Fixed point theorems for contractions in S-metric spaces and KKS

ISSN 2321-2926

metric spaces. International journal of mathematics and its applications. Vol-5, Issue 4-E(2017),Pp- 619-632,ISSN-2347-1557.

- [21] Some fixed point results in S-metric spaces, Journal of mathematical sciences and applications. Vol-4, No:1,2016.Pp-1-3,doi:10.12691/JMSA-4-1-1-Research article.
- [22] S.Sedghi, Altun, N. Shobe, M.Salahshour: Some properties of S-metric spaces and fixed point results. Kyung book Malt. T-54,113-122(2014).