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I. INTRODUCTION  

The Session Initiation Protocol (SIP) is a general-

purpose Signaling protocol used to control various 

types of media sessions. SIP is a protocol of 

growing importance, with uses in Voice over IP, 

Instant Messaging, IPTV, Voice Conferencing, and 

Video Conferencing. Wireless providers are 

standardizing on SIP as the basis for the IP 

Multimedia System (IMS) standard for the Third 

Generation Partnership Project (3GPP). Third-party 

VoIP providers use SIP (e.g., Vonage, Gizmo), as 

do digital voice offerings from existing legacy 

Telcos (e.g., AT&T, Verizon) as well as their cable 

competitors (e.g., Comcast, Time-Warner). 

While individual servers may be able to support 

hundreds or even thousands of users, large-scale 

ISPs need to support customers in the millions. A 

central component to providing any large-scale 

service is the ability to scale that service with 

increasing load and customer demands. A frequent 

mechanism to scale a service is to use some form of 

a load-balancing dispatcher that distributes requests 

across a cluster of servers. However, almost all 

research in this space has been in the context of 

either the Web (e.g., HTTP [24]) or file service 

(e.g., NFS [1]). This paper presents and evaluates 

several algorithms for balancing load across 

multiple SIP servers. We introduce new algorithms 

which outperform existing ones. Our work is 

relevant not just to SIP but also for other systems 

where it is advantageous for the load balancer to 

maintain sessions in which requests corresponding 

to the same session is sent by the load balancer to 

the same server.  

SIP has a number of features which distinguish it 

from protocols such as HTTP. SIP is a transaction-

based protocol designed to establish and tear down 

media sessions, frequently referred to as calls. Two 

types of state exist in SIP. The first, session state, is 

created by the INVITE transaction and is destroyed 

by the BYE transaction. Each SIP transaction also 
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creates state that exists for the duration of that 

transaction. SIP thus has overheads that are 

associated both with sessions and with transactions, 

and taking advantage of this fact can result in more 

optimized SIP load balancing.  

The session-oriented nature of SIP has important 

implications for load balancing. Transactions 

corresponding to the same call must be routed to 

the same server; otherwise, the server will not 

recognize the call. Session-aware request 

assignment (SARA) is the process where a system 

assigns requests to servers such that sessions are 

properly recognized by that server, and subsequent 

requests corresponding to that same session are 

assigned to the same server. In contrast, sessions 

are less significant in HTTP. While SARA can be 

done in HTTP for performance reasons (e.g., 

routing SSL sessions to the same back end to 

encourage session reuse and minimize key 

exchange), it is not necessary for correctness. Many 

HTTP load balancers do not take sessions into 

account in making load balancing decisions.  

Another key aspect of the SIP protocol is that 

different transaction types, most notably the 

INVITE and BYE transactions, can incur 

significantly different overheads: On our systems, 

INVITE transactions are about 75 percent more 

expensive than BYE transactions. A load balancer 

can make use of this information to make better 

load balancing decisions which improve both 

response time and throughput. Our work is the first 

to demonstrate how load balancing can be 

improved by combining SARA with estimates of 

relative overhead for different requests.  

This paper introduces and evaluates several novel 

algorithms for balancing load across SIP servers. 

Each algorithm combines knowledge of the SIP 

protocol, dynamic estimates of server load, and 

Session-Aware Request Assignment (SARA).In 

addition, the best-performing algorithm takes into 

account the variability of call lengths, 

distinguishing transactions from calls, and the 

difference in relative processing costs for different 

SIP transactions. 

1) Call-Join-Shortest-Queue (CJSQ) tracks the 

number of calls (in this paper, we use the terms call 

and session interchangeably) allocated to each 

back-end server and routes new SIP calls to the 

node with the least number of active calls. 

2) Transaction-Join-Shortest-Queue (TJSQ) routes 

a new call to the server that has the fewest active 

transactions, rather than the fewest calls. This 

algorithm improves on CJSQ by recognizing that 

calls in SIP are composed of the two transactions, 

INVITE and BYE, and that by tracking their 

completion separately, finer-grained estimates of 

server load can be maintained. This leads to better 

load balancing, particularly since calls have 

variable length and thus do not have a unit cost. 

3) Transaction-Least-Work-Left (TLWL) routes a 

new call to the server that has the least work, where 

work (i.e., load) is based on relative estimates of 

transaction costs. TLWL takes advantage of the 

observation that INVITE transactions are more 

expensive than BYE transactions. We have found 

that a 1.75:1 cost ratio between INVITE and BYE 

results in the best performance. 

We implement these algorithms in software by 

adding them to the Open SER open-source SIP 

server configured as a load balancer. Our 

evaluation is done using the SIPp open-source 

workload generator driving traffic through the load 

balancer to a cluster of servers running a 

commercially available SIP server. The 

experiments are conducted on a dedicated test bed 
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of Intel x86-based servers connected via Gigabit 

Ethernet. 

This paper makes the following contributions: 

• We show that two of our new algorithms, TLWL 

and TJSQ, scale better, provide higher throughputs 

and exhibit lower response times than any of the 

other approaches we tested. The differences in 

response times are particularly significant. For low 

to moderate workloads, TLWL and TJSQ provide 

response times for INVITE transactions that are an 

order of magnitude lower than that of any of the 

other approaches. Under high loads, the 

improvement increases to two orders of magnitude. 

• We present the design and implementation of a 

load balancer for SIP servers, and demonstrate 

throughput of up to 5500 calls per second and 

scalability of up to 10 nodes. Our measurements 

show that the dispatcher introduces minimal 

overhead to a SIP request. We extensively evaluate 

several approaches for balancing SIP load across 

servers including the three novel algorithms 

described above as well as standard distribution 

policies such as round-robin or hashing based on 

the SIP Call-ID. 

• We present a detailed analysis of why TLWL and 

TJSQ provide substantially better response times 

than the other algorithms. Occupancy has a 

significant effect on response times, where the 

occupancy for a transaction T assigned to a server S 

is the number of transactions already being handled 

by S when T is assigned to it. As described in detail 

in Section V, by allocating load more evenly across 

nodes, the distributions of occupancy across the 

cluster are balanced, resulting in greatly improved 

response times. The naive approaches, in contrast, 

lead to imbalances in load. These imbalances result 

in the distributions of occupancy that exhibit large 

tails, which contribute significantly to response 

time as seen by that request. To our knowledge, we 

are the first to observe this phenomenon 

experimentally. 

These results show that our load balancer can 

effectively scale SIP server throughput and provide 

significantly lower response times without 

becoming a bottleneck. The dramatic response time 

reductions that we achieve with TLWL and TJSQ 

suggest that these algorithms should be adapted for 

other applications, particularly when response time 

is crucial. 

We believe these results are general for load 

balancers, which should keep track of the number 

of uncompleted requests assigned to each server in 

order to make better load balancing decisions. If the 

load balancer can reliably estimate the relative 

overhead for requests that it receives, this can 

further improve performance. 

II. BACKGROUND 

This section presents a brief description of SIP.  

A. Overview of the Protocol 

SIP is a control-plane protocol designed to 

establish, alter, and terminate media sessions 

between two or more parties. The core IETF SIP 

specification is given in RFC 3261 [26], although 

there are many additional RFCs that enhance and 

refine the protocol. SIP uses HTTP-like 

request/response transactions. A transaction 

consists of a request to perform a particular method 

(e.g., INVITE, BYE, CANCEL, etc.) and at least 

one response to that request. Fig. A below 

illustrates a typical SIP VoIP scenario, known as 

the “SIP Trapezoid.” 
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Fig. A. SIP Trapezoid 

Note the separation between control and data paths: 

SIP messages traverse the SIP overlay network, 

routed by proxies, to find the eventual destinations. 

Once endpoints are found, communication is 

typically performed directly in a peer-to-peer 

fashion. In this example, each endpoint is an IP 

phone. However, an endpoint can also be a server 

providing services such as voicemail, firewalling, 

voice conferencing, etc. This paper focuses on 

scaling the server (in SIP terms, the UAS, 

described below), rather than the proxy. The 

separation of the data plane from the control plane 

is one of the key features of SIP and contributes to 

its flexibility. SIP was designed with extensibility 

in mind; for example, the SIP protocol requires that 

proxies forward and preserve headers that they do 

not understand. As another example, SIP can run 

over many protocols such as UDP, TCP, TLS, 

SCTP, IPv4, and IPv6. 

B. SIP Users, Agents, Transactions, and Messages 

SIP Users, Agents, Transactions, and Messages A 

SIP Uniform Resource Identifier (URI) uniquely 

identifies a SIP user, e.g., sip:hongbo@us.ibm.com. 

This layer of indirection enables features such as 

location independence and mobility. SIP users 

employ endpoints known as user agents. These 

entities initiate and receive sessions. They can be 

either hardware (e.g., cell phones, pages, hard VoIP 

phones) or software (e.g., media mixers, IM clients, 

soft phones). User agents are further decomposed 

into User Agent Clients (UAC) and User Agent 

Servers (UAS), depending on whether they act as a 

client in a transaction (UAC) or a server (UAS). 

Most call flows for SIP messages thus display how 

the UAC and UAS behave for that situation. SIP 

uses HTTP-like request/response transactions. A 

transaction consists of a request to perform a 

particular method (e.g., INVITE, BYE, CANCEL, 

etc.) and at least one response to that request. 

Responses may be provisional, namely, that they 

provide some short-term feedback to the user (e.g., 

100 TRYING, 180 RINGING) to indicate progress, 

or they can be final (e.g., 200 OK, 407 

UNAUTHORIZED). The transaction is only 

completed when a final response is received, not a 

provisional response. A SIP session is a 

relationship in SIP between two user agents that 

lasts for some time period; in VoIP, a session 

corresponds to a phone call. This is called a dialog 

in SIP and results in state being maintained on the 

server for the duration of the session. For example, 

an INVITE message not only creates a transaction 

(the sequence of messages for completing the 

INVITE), but also a session if the transactions 

completes successfully. A BYE message creates a 

new transaction and, when the transaction 

completes, ends the session. Fig. B illustrates a 

typical SIP message flow, where SIP messages are 

routed through the proxy.  

 

Fig. B. SIP Message Flow 
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In this example, a call is initiated with the INVITE 

message and accepted with a 200 OK message. 

Media is exchanged, and then the call is terminated 

using the BYE message. 

C. SIP Message Header 

SIP is a text-based protocol that derives much of its 

syntax from HTTP [12]. Messages contain headers 

and additionally bodies, depending on the type of 

message. In VoIP, SIP messages contain an 

additional protocol, the Session Description 

Protocol (SDP) [30], which negotiates session 

parameters (e.g., which voice codec to use) 

between endpoints using an offer/answer model. 

Once the end-hosts agree to the session 

characteristics, the Real-time Transport Protocol 

(RTP) 

is typically used to carry voice data [33]. RFC 3261 

[31] shows many examples of SIP headers. An 

important header to notice is the Call-ID: header, 

which is a globally unique identifier for the session 

that is to be created. Subsequent SIP messages 

must refer to that Call-ID to look up the established 

session state. If a SIP server is provided by a 

cluster, the initial INVITE request will be routed to 

one back-end node, which will create the session 

state. Barring some form of distributed shared 

memory in the cluster, subsequent packets for that 

session must also be routed to the same back-end 

node; otherwise the packet will be erroneously 

rejected. Thus, many SIP load-balancing 

approaches use the Call-ID as hashing value in 

order to route the message to the proper node. 

III. LOAD BALANCING ALGORITHMS 

This section presents the design of our load 

balancing algorithms. Due to space limitations, 

implementation details are omitted. Figure 1 

depicts our overall system. User Agent Clients send 

SIP requests (e.g., INVITE, BYE) to our load 

balancer which then selects a SIP server to handle 

each request.  

 

Fig.1. System Architecture 

The distinction between the various load balancing 

algorithms presented in this paper are how they 

choose which SIP server to handle a request. 

Servers send SIP responses (e.g., 180 TRYING or 

200 OK) to the load balancer which then forwards 

the response to the client. 

Note that SIP is used to establish, alter, or 

terminate media sessions. Once a session has been 

established, the parties participating in the session 

would typically communicate directly with each 

other using a different protocol for the media 

transfer which would not go through our SIP load 

balancer. 

A. Novel Algorithms 

A key aspect of our load balancer is that requests 

corresponding to the same call are routed to the 

same server. The load balancer has the freedom to 

pick a server only on the first request of a call. All 

subsequent requests corresponding to the call must 

go to the same server. This allows all requests 

corresponding to the same session to efficiently 

access state corresponding to the session. 

Our new load balancing algorithms are based on 

assigning calls to servers by picking the server with 

the (estimated) least amount of work assigned but 
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not yet completed. While the concept of assigning 

work to servers with the least amount of work left 

to do has been applied in other contexts [13], 

[27],the specifics of how to do this efficiently for a 

real application are often not at all obvious. The 

system needs some method to reliably estimate the 

amount of work that a server has left to do at the 

time load balancing decisions are made. 

In our system, the load balancer can estimate the 

work assigned to a server based on the requests it 

has assigned to the server and the responses it has 

received from the server. All responses from 

servers to clients first go through the load balancer 

which forwards the responses to the appropriate 

clients. By monitoring these responses, the load 

balancer can determine when a server has finished 

processing a request or call and update the 

estimates it is maintaining for the work assigned to 

the server. 

1) Call-Join-Shortest-Queue: The Call-Join-

Shortest-Queue (CJSQ) algorithm estimates the 

amount of work a server has left to do based on the 

number of calls (sessions) assigned to the server. 

Counters are maintained by the load balancer 

indicating the number of calls assigned to each 

server. When a new INVITE request is received 

(which corresponds to a new call), the request is 

assigned to the server with the lowest counter, and 

the counter for the server is incremented by one. 

When the load balancer receives a200 OK response 

to the BYE corresponding to the call, it knows that 

the server has finished processing the call and 

ecrements the counter for the server. 

A limitation of this approach is that the number of 

calls assigned to a server is not always an accurate 

measure of the load on a server. There may be long 

idle periods between the transactions in a call. In 

addition, different calls may consist of different 

numbers of transactions and may consume different 

amounts of server resources. An advantage of 

CJSQ is that it can be used in environments in 

which the load balancer is aware of the calls 

assigned to servers but does not have an accurate 

estimate of the transactions assigned to servers. 

2) Transaction-Join-Shortest-Queue: An 

alternative method is to estimate server load based 

on the number of transactions (requests) assigned 

to the servers. The Transaction-Join-Shortest-

Queue (TJSQ) algorithm estimates the amount of 

work a server has left to do is based on the number 

of transactions (requests) assigned to the server. 

Counters are maintained by the load balancer 

indicating the number of transactions assigned to 

each server. New calls are assigned to servers with 

the lowest counter. 

A limitation of this approach is that all transactions 

are weighted equally. In the SIP protocol, INVITE 

requests are more expensive than BYE requests, 

since the INVITE transaction state machine is more 

complex than the one for non-INVITE transactions 

(such as BYE). This difference in processing cost 

should ideally be taken into account in making load 

balancing decisions. 

3) Transaction-Least-Work-Left: The 

Transaction- Least-Work-Left (TLWL) algorithm 

addresses this issue by assigning different weights 

to different transactions depending on their relative 

costs. It is similar to TJSQ with the enhancement 

that transactions are weighted by relative overhead; 

in the special case that all transactions have the 

same expected overhead, TLWL and TJSQ are the 

same. Counters are maintained by the load balancer 

indicating the weighted number of transactions 

assigned to each server. New calls are assigned to 

the server with the lowest counter. A ratio is 

defined in terms of relative cost of INVITE to BYE 
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transactions. Thus far, our presentation of the load 

balancing algorithms assumes that the servers have 

similar processing capacities. However, this may 

not always be the case. Some servers may be more 

powerful than others; other servers may have 

substantial background jobs that consume cycles. 

In these situations, the load balancer could assign a 

new call to the server with the lowest value of 

estimated work left to do (as determined by the 

counters) divided by the capacity of the server; this 

applies to CJSQ, TJSQ, and TLWL. 

In some cases, though, the load balancer might not 

know the capacity of the servers. For these 

situations, our new algorithms have the robustness 

to automatically adapt to heterogeneous back-end 

servers with over 60% higher through puts than the 

previous algorithms we tested. 

CJSQ, TJSQ, and TLWL are all novel load 

balancing algorithms. In addition, we are not aware 

of any previous work which has successfully 

adapted least work left algorithms for load 

balancing with SARA. 

IV. EXPERIMENTAL ENVIRONMENT 

We describe here the hardware and software that 

we use, our experimental methodology, and the 

metrics we measure. 

SIP Software: For client-side workload generation, 

we use the open source SIPp and Asterisk SIP load 

generator tool, SIPp is the defacto standard for 

generating SIP load. SIPp is a configurable packet 

generator, extensible via a simple XML 

configuration language. It uses an efficient event-

driven architecture but is not fully RFC compliant 

(e.g., it does not do full packet parsing). It can thus 

emulate either a client (UAC) or server (UAS), but 

at many times the capacity of a standard SIP end 

host. For the back-end server, we use a 

commercially available SIP server. 

Hardware and System Software: We conduct 

experiments using two different types of machines, 

both of which are IBM x-Series rack-mounted 

servers. Table I summarizes the hardware and 

software configuration for our test bed.  

 

TABLE I: HARDWARE TESTBED 

CHARACTERISTICS 

Eight of the servers have two processors; however, 

for our experiments, we use only one processor. All 

machines are interconnected using a gigabit 

Ethernet switch. 

Workload: The workload we use is SIPp’s simple 

SIP UAC call model consisting of an INVITE, 

which the server responds to with 100 TRYING, 

180 RINGING, and 200 OK responses. The client 

then sends an ACK request which creates the 

session. After a variable pause to model call hold 

times, the client closes the session using a BYE 

which the server responds to with a 200 OK 

response. Calls may or may not have pause times 

associated with them, intended to capture the 

variable call duration of SIP sessions. In our 

experiments, pause times are normally distributed 

with a mean of one minute and a variance of 30 

seconds. While simple, this is a common 

configuration used in SIP performance testing. 
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Currently no standard SIP workload model exists, 

although SPEC is attempting to define one [30]. 

Methodology: Each run lasts for 3 minutes after a 

warm-up period of 10 minutes. There is also a 

ramp-up phase until the experimental rate is 

reached. The request rate starts at 1 cps and 

increases by x cps every second, where x is the 

number of back-end nodes. Thus, if there are 8 

servers, after 5 seconds, the request rate will be 41 

cps. If load is evenly distributed, each node will see 

an increase in the rate of received calls of one 

additional cps until the experimental rate is 

reached. After the experimental rate is reached, it is 

sustained. SIPp is used in open-loop mode; calls 

are generated at the configured rate regardless of 

whether the other end responds to them. 

Metrics: We measure both throughput and 

response time. We define throughput as the number 

of completed requests per second. The peak 

throughput is defined as the maximum throughput 

which can be sustained while successfully handling 

more than 99.99% of all requests. Response time is 

defined as the length of time between when a 

request (INVITE or BYE) is sent and the successful 

200 OK is received. 

Component Performance: We have measured the 

throughput of a single SIPp node in our system to 

be 2925 calls per second (cps) without pause times 

and 2098 cps with pause times. The peak 

throughput for the back-end SIP server is about 300 

cps in our system; this figure varies slightly 

depending on the workload. Surprisingly, the peak 

throughput is not affected much by pause times. 

While we have observed that some servers can be 

adversely affected by pause times, we believe other 

overheads dominate and obscure this effect in the 

server we use. 

 

V. RESULTS 

In this section, we present in detail the 

experimental results of the load balancing 

algorithms defined in Section III. 

A. Response Time 

We observe significant differences in the response 

times of the different load balancing algorithms. 

Figure-2 shows the average response time for each 

algorithm versus offered load measured for the 

INVITE transaction.  

 

Fig.2: Average Response Time for INVITE 

Note especially that the Y axis is in logarithmic 

scale. In this experiment, the load balancer 

distributes requests across 8 back-end SIP server 

nodes. 

The algorithms cluster into three groups: TLWL 

offer the best performance; TJSQ offers moderate 

performance; and CJSQ results in the worst 

performance. 

As the system approaches peak throughput, the 

performance advantage of the first group of 

algorithms increases to two orders of magnitude. 

Similar trends are seen in Figure 3, which shows 

average response time for each algorithm vs. 
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offered load for BYE transactions, again using 8 

back-end SIP server nodes. BYE transactions 

consume fewer resources than INVITE transactions 

resulting in lower average response times. TLW 

Land TJSQ provide the lowest average response 

times.  

 

Fig.3: Average Response Time for BYE 

However, the differences in response times for the 

various algorithms are smaller than is the case with 

INVITE transactions. This is largely because of 

SARA. The load balancer has freedom to pick the 

least loaded server for the first INVITE transaction 

of a call. However, a BYE transaction must be sent 

to the server which is already handling the call. The 

significant improvements in response time that 

TLW Land TJSQ provide present a compelling 

reason for systems such as these to use our 

algorithms. 

B. Throughput 

We now examine how our load balancing 

algorithms perform in terms of how well 

throughput scales with increasing numbers of back-

end servers. In the ideal case, we would hope to see 

8 nodes provide 8 times the single-node 

performance. Recall that the peak throughput is the 

maximum throughput which can be sustained while 

successfully handling more than 99.99% of all 

requests and is approximately 300 cps for a back-

end SIP server node. Therefore, linear scalability 

suggests a maximum possible throughput of about 

2400 cps for8 nodes. Figure 4 shows the peak 

throughputs for the various algorithms using 8 

back-end nodes. Several interesting results are 

illustrated in this graph. 

 

Fig.4: Peak Throughput of 3 Algorithms 

 

Fig.5: Peak throughput vs. # of nodes (TLWL) 

TLWL achieves linear scalability and results in the 

highest peak throughput of 2439 cps. The same 

three algorithms resulted in the best response times 

and peak throughput. Response times may not be 

the most reliable measure of load on the servers. If 

the load balancer weights the most recent response 

time(s) too heavily, this might not provide enough 

information to determine the least loaded server. 

On the other hand, if the load balancer gives 

significant weight to response times in the past, this 

makes the algorithm too slow to respond to 
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changing load conditions. A server having the 

lowest weighted average response time might have 

several new calls assigned to it resulting in too 

much load on the server before the load balancer 

determines that it is no longer the least loaded 

server. In contrast, when a call is assigned to a 

server using TLWL or TJSQ, the load balancer 

takes this information immediately into account 

when making future load balancing decisions. 

Therefore, TLWL and TJSQ would not encounter 

this problem. 

Calls-Join-Shortest-Queue (CJSQ) is significantly 

worse than the others, since it does not distinguish 

call hold times in the way that the transaction-based 

algorithms do. Experiments we ran that did not 

include pause times (not shown due to space 

limitations) showed CJSQ providing very good 

performance, comparable to TJSQ. This is perhaps 

not surprising since, when there are no pause times, 

the algorithms are effectively equivalent. However, 

the presence of pause times can lead CJSQ to 

misjudgments about allocation that end up being 

worse than a static allocation such as Hash. TJSQ 

does better than most of the other algorithms. This 

shows that knowledge of SIP transactions and 

paying attention to the call hold time can make a 

significant difference, particularly in contrast to 

CJSQ. 

We determined that the load balancer can support 

up to about 5400 cps before becoming overloaded. 

Given that the peak throughput of the back-end SIP 

server that we use is about 300 cps, the prototype 

should be able to support about17 servers of this 

type. The load balancer was not a bottleneck in any 

of the experiments described in this paper. 

In many deployments, it is not realistic to expect 

that all nodes of a cluster have the same server 

capacity. Some servers may be more powerful than 

others. Other servers maybe running background 

tasks which limit the CPU resources which can be 

devoted to SIP. Our new algorithms adapt to 

heterogeneous back ends much more effectively 

than the prior art ones. Experiments we ran indicate 

that TLWL achieves near optimal throughput when 

the back ends differ in processing power by as 

much as 50% which is over 60%higher throughput 

than the prior art algorithms we tested. 

VII. SUMMARY AND CONCLUSIONS 

This paper introduces three novel approaches to 

load balancing in SIP server clusters. We present 

the design, implementation, and evaluation of a 

load balancer for cluster based SIP servers. Our 

load balancer performs session-aware request 

assignment (SARA) to ensure that SIP transactions 

are routed to the proper back-end node that 

contains the appropriate session state. We presented 

three novel algorithms: Call Join Shortest Queue 

(CJSQ), Transaction Join Shortest Queue (TJSQ), 

and Transaction Least-Work-Left (TLWL). 

The TLWL algorithms result in the best 

performance, both in terms of response time and 

throughput, followed by TJSQ.TJSQ has the 

advantage that no knowledge is needed of relative 

overheads of different transaction types. The most 

significant performance differences were in 

response time. For SIP applications that require 

good quality of service, these dramatically lower 

response times are significant. We showed that 

these algorithms provide significantly better 

response time by distributing requests across the 

cluster more evenly, thus minimizing occupancy 

and the corresponding amount of time a particular 

request waits behind others for service. TLWL 

provides 25%better through put than other 

algorithms. TJSQ provides nearly the same level of 

performance. CJSQ performs poorly since it does 
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not distinguish transactions from calls and does not 

consider variable call hold times. 

Our results show that by combining knowledge of 

the SIP protocol, recognizing variability in call 

lengths, distinguishing transactions from calls, and 

accounting for the difference in processing costs for 

different SIP transaction types, load balancing for 

SIP servers can be significantly improved. 

The dramatic reduction in response times achieved 

by both TLWL and TJSQ, compared to other 

approaches, suggest that they should be applied to 

other domains besides SIP, particularly if response 

time is crucial. Our results are influenced by the 

fact that SIP requires SARA. However, even where 

SARA is not needed, variants of TLWL and TJSQ 

could be deployed and may offer significant 

benefits over commonly deployed load balancing 

algorithms based on round robin, hashing, or 

response times. A key aspect of TJSQ and TLWL 

is that they track the number of uncompleted 

requests assigned to each server, in order to make 

better assignments. This can be applied to load 

balancing systems in general. In addition, if the 

load balancer can reliably estimate the relative 

overhead for requests that it receives, this can 

further improve performance. 
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