
International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

www.forum4researchers.com 64

I. INTRODUCTION

The Session Initiation Protocol (SIP) is a general-

purpose Signaling protocol used to control various

types of media sessions. SIP is a protocol of

growing importance, with uses in Voice over IP,

Instant Messaging, IPTV, Voice Conferencing, and

Video Conferencing. Wireless providers are

standardizing on SIP as the basis for the IP

Multimedia System (IMS) standard for the Third

Generation Partnership Project (3GPP). Third-party

VoIP providers use SIP (e.g., Vonage, Gizmo), as

do digital voice offerings from existing legacy

Telcos (e.g., AT&T, Verizon) as well as their cable

competitors (e.g., Comcast, Time-Warner).

While individual servers may be able to support

hundreds or even thousands of users, large-scale

ISPs need to support customers in the millions. A

central component to providing any large-scale

service is the ability to scale that service with

increasing load and customer demands. A frequent

mechanism to scale a service is to use some form of

a load-balancing dispatcher that distributes requests

across a cluster of servers. However, almost all

research in this space has been in the context of

either the Web (e.g., HTTP [24]) or file service

(e.g., NFS [1]). This paper presents and evaluates

several algorithms for balancing load across

multiple SIP servers. We introduce new algorithms

which outperform existing ones. Our work is

relevant not just to SIP but also for other systems

where it is advantageous for the load balancer to

maintain sessions in which requests corresponding

to the same session is sent by the load balancer to

the same server.

SIP has a number of features which distinguish it

from protocols such as HTTP. SIP is a transaction-

based protocol designed to establish and tear down

media sessions, frequently referred to as calls. Two

types of state exist in SIP. The first, session state, is

created by the INVITE transaction and is destroyed

by the BYE transaction. Each SIP transaction also

Abstract: This paper introduces novel load balancing algorithms for distributing Session Initiation Protocol

(SIP) requests to a cluster of SIP servers. Our load balancer improves both throughput and response time

versus a single node, while exposing a single interface to external clients. We present the design,

implementation and evaluation of our system using a cluster of Intel x86 machines running Linux. Our best

algorithm, Transaction Least-Work-Left (TLWL), achieves its performance by integrating several features:

knowledge of the SIP protocol; dynamic estimates of back-end server load; distinguishing transactions from

calls; recognizing variability in call length; and exploiting differences in processing costs for different SIP

transactions. By combining these features, our algorithm provides finer-grained load balancing than standard

approaches, resulting in throughput improvements of up to 24 percent and response time improvements of up

to two orders of magnitude. We present a detailed analysis of occupancy to show how our algorithms

significantly reduce response time.

Keywords: Dispatcher, Load Balancing, Performance, Session Initiation Protocol (SIP).

Effective SIP Servers Load Balancing

P. Harikrishna
1
, K. Vasanth Kumar

2
and P. Suresh Babu

2

1. M.Tech Scholar, Department of CSE, Kaushik College of Engineering, Visakhapatnam, AP, India.

2. Associate Professor, Department of CSE, Kaushik College of Engineering, Visakhapatnam, AP,

India

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Effective SIP Servers Load Balancing 65

creates state that exists for the duration of that

transaction. SIP thus has overheads that are

associated both with sessions and with transactions,

and taking advantage of this fact can result in more

optimized SIP load balancing.

The session-oriented nature of SIP has important

implications for load balancing. Transactions

corresponding to the same call must be routed to

the same server; otherwise, the server will not

recognize the call. Session-aware request

assignment (SARA) is the process where a system

assigns requests to servers such that sessions are

properly recognized by that server, and subsequent

requests corresponding to that same session are

assigned to the same server. In contrast, sessions

are less significant in HTTP. While SARA can be

done in HTTP for performance reasons (e.g.,

routing SSL sessions to the same back end to

encourage session reuse and minimize key

exchange), it is not necessary for correctness. Many

HTTP load balancers do not take sessions into

account in making load balancing decisions.

Another key aspect of the SIP protocol is that

different transaction types, most notably the

INVITE and BYE transactions, can incur

significantly different overheads: On our systems,

INVITE transactions are about 75 percent more

expensive than BYE transactions. A load balancer

can make use of this information to make better

load balancing decisions which improve both

response time and throughput. Our work is the first

to demonstrate how load balancing can be

improved by combining SARA with estimates of

relative overhead for different requests.

This paper introduces and evaluates several novel

algorithms for balancing load across SIP servers.

Each algorithm combines knowledge of the SIP

protocol, dynamic estimates of server load, and

Session-Aware Request Assignment (SARA).In

addition, the best-performing algorithm takes into

account the variability of call lengths,

distinguishing transactions from calls, and the

difference in relative processing costs for different

SIP transactions.

1) Call-Join-Shortest-Queue (CJSQ) tracks the

number of calls (in this paper, we use the terms call

and session interchangeably) allocated to each

back-end server and routes new SIP calls to the

node with the least number of active calls.

2) Transaction-Join-Shortest-Queue (TJSQ) routes

a new call to the server that has the fewest active

transactions, rather than the fewest calls. This

algorithm improves on CJSQ by recognizing that

calls in SIP are composed of the two transactions,

INVITE and BYE, and that by tracking their

completion separately, finer-grained estimates of

server load can be maintained. This leads to better

load balancing, particularly since calls have

variable length and thus do not have a unit cost.

3) Transaction-Least-Work-Left (TLWL) routes a

new call to the server that has the least work, where

work (i.e., load) is based on relative estimates of

transaction costs. TLWL takes advantage of the

observation that INVITE transactions are more

expensive than BYE transactions. We have found

that a 1.75:1 cost ratio between INVITE and BYE

results in the best performance.

We implement these algorithms in software by

adding them to the Open SER open-source SIP

server configured as a load balancer. Our

evaluation is done using the SIPp open-source

workload generator driving traffic through the load

balancer to a cluster of servers running a

commercially available SIP server. The

experiments are conducted on a dedicated test bed

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

P. Harikrishna, K. Vasanth Kumar and P. Suresh Babu 66

of Intel x86-based servers connected via Gigabit

Ethernet.

This paper makes the following contributions:

• We show that two of our new algorithms, TLWL

and TJSQ, scale better, provide higher throughputs

and exhibit lower response times than any of the

other approaches we tested. The differences in

response times are particularly significant. For low

to moderate workloads, TLWL and TJSQ provide

response times for INVITE transactions that are an

order of magnitude lower than that of any of the

other approaches. Under high loads, the

improvement increases to two orders of magnitude.

• We present the design and implementation of a

load balancer for SIP servers, and demonstrate

throughput of up to 5500 calls per second and

scalability of up to 10 nodes. Our measurements

show that the dispatcher introduces minimal

overhead to a SIP request. We extensively evaluate

several approaches for balancing SIP load across

servers including the three novel algorithms

described above as well as standard distribution

policies such as round-robin or hashing based on

the SIP Call-ID.

• We present a detailed analysis of why TLWL and

TJSQ provide substantially better response times

than the other algorithms. Occupancy has a

significant effect on response times, where the

occupancy for a transaction T assigned to a server S

is the number of transactions already being handled

by S when T is assigned to it. As described in detail

in Section V, by allocating load more evenly across

nodes, the distributions of occupancy across the

cluster are balanced, resulting in greatly improved

response times. The naive approaches, in contrast,

lead to imbalances in load. These imbalances result

in the distributions of occupancy that exhibit large

tails, which contribute significantly to response

time as seen by that request. To our knowledge, we

are the first to observe this phenomenon

experimentally.

These results show that our load balancer can

effectively scale SIP server throughput and provide

significantly lower response times without

becoming a bottleneck. The dramatic response time

reductions that we achieve with TLWL and TJSQ

suggest that these algorithms should be adapted for

other applications, particularly when response time

is crucial.

We believe these results are general for load

balancers, which should keep track of the number

of uncompleted requests assigned to each server in

order to make better load balancing decisions. If the

load balancer can reliably estimate the relative

overhead for requests that it receives, this can

further improve performance.

II. BACKGROUND

This section presents a brief description of SIP.

A. Overview of the Protocol

SIP is a control-plane protocol designed to

establish, alter, and terminate media sessions

between two or more parties. The core IETF SIP

specification is given in RFC 3261 [26], although

there are many additional RFCs that enhance and

refine the protocol. SIP uses HTTP-like

request/response transactions. A transaction

consists of a request to perform a particular method

(e.g., INVITE, BYE, CANCEL, etc.) and at least

one response to that request. Fig. A below

illustrates a typical SIP VoIP scenario, known as

the “SIP Trapezoid.”

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Effective SIP Servers Load Balancing 67

Fig. A. SIP Trapezoid

Note the separation between control and data paths:

SIP messages traverse the SIP overlay network,

routed by proxies, to find the eventual destinations.

Once endpoints are found, communication is

typically performed directly in a peer-to-peer

fashion. In this example, each endpoint is an IP

phone. However, an endpoint can also be a server

providing services such as voicemail, firewalling,

voice conferencing, etc. This paper focuses on

scaling the server (in SIP terms, the UAS,

described below), rather than the proxy. The

separation of the data plane from the control plane

is one of the key features of SIP and contributes to

its flexibility. SIP was designed with extensibility

in mind; for example, the SIP protocol requires that

proxies forward and preserve headers that they do

not understand. As another example, SIP can run

over many protocols such as UDP, TCP, TLS,

SCTP, IPv4, and IPv6.

B. SIP Users, Agents, Transactions, and Messages

SIP Users, Agents, Transactions, and Messages A

SIP Uniform Resource Identifier (URI) uniquely

identifies a SIP user, e.g., sip:hongbo@us.ibm.com.

This layer of indirection enables features such as

location independence and mobility. SIP users

employ endpoints known as user agents. These

entities initiate and receive sessions. They can be

either hardware (e.g., cell phones, pages, hard VoIP

phones) or software (e.g., media mixers, IM clients,

soft phones). User agents are further decomposed

into User Agent Clients (UAC) and User Agent

Servers (UAS), depending on whether they act as a

client in a transaction (UAC) or a server (UAS).

Most call flows for SIP messages thus display how

the UAC and UAS behave for that situation. SIP

uses HTTP-like request/response transactions. A

transaction consists of a request to perform a

particular method (e.g., INVITE, BYE, CANCEL,

etc.) and at least one response to that request.

Responses may be provisional, namely, that they

provide some short-term feedback to the user (e.g.,

100 TRYING, 180 RINGING) to indicate progress,

or they can be final (e.g., 200 OK, 407

UNAUTHORIZED). The transaction is only

completed when a final response is received, not a

provisional response. A SIP session is a

relationship in SIP between two user agents that

lasts for some time period; in VoIP, a session

corresponds to a phone call. This is called a dialog

in SIP and results in state being maintained on the

server for the duration of the session. For example,

an INVITE message not only creates a transaction

(the sequence of messages for completing the

INVITE), but also a session if the transactions

completes successfully. A BYE message creates a

new transaction and, when the transaction

completes, ends the session. Fig. B illustrates a

typical SIP message flow, where SIP messages are

routed through the proxy.

Fig. B. SIP Message Flow

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

P. Harikrishna, K. Vasanth Kumar and P. Suresh Babu 68

In this example, a call is initiated with the INVITE

message and accepted with a 200 OK message.

Media is exchanged, and then the call is terminated

using the BYE message.

C. SIP Message Header

SIP is a text-based protocol that derives much of its

syntax from HTTP [12]. Messages contain headers

and additionally bodies, depending on the type of

message. In VoIP, SIP messages contain an

additional protocol, the Session Description

Protocol (SDP) [30], which negotiates session

parameters (e.g., which voice codec to use)

between endpoints using an offer/answer model.

Once the end-hosts agree to the session

characteristics, the Real-time Transport Protocol

(RTP)

is typically used to carry voice data [33]. RFC 3261

[31] shows many examples of SIP headers. An

important header to notice is the Call-ID: header,

which is a globally unique identifier for the session

that is to be created. Subsequent SIP messages

must refer to that Call-ID to look up the established

session state. If a SIP server is provided by a

cluster, the initial INVITE request will be routed to

one back-end node, which will create the session

state. Barring some form of distributed shared

memory in the cluster, subsequent packets for that

session must also be routed to the same back-end

node; otherwise the packet will be erroneously

rejected. Thus, many SIP load-balancing

approaches use the Call-ID as hashing value in

order to route the message to the proper node.

III. LOAD BALANCING ALGORITHMS

This section presents the design of our load

balancing algorithms. Due to space limitations,

implementation details are omitted. Figure 1

depicts our overall system. User Agent Clients send

SIP requests (e.g., INVITE, BYE) to our load

balancer which then selects a SIP server to handle

each request.

Fig.1. System Architecture

The distinction between the various load balancing

algorithms presented in this paper are how they

choose which SIP server to handle a request.

Servers send SIP responses (e.g., 180 TRYING or

200 OK) to the load balancer which then forwards

the response to the client.

Note that SIP is used to establish, alter, or

terminate media sessions. Once a session has been

established, the parties participating in the session

would typically communicate directly with each

other using a different protocol for the media

transfer which would not go through our SIP load

balancer.

A. Novel Algorithms

A key aspect of our load balancer is that requests

corresponding to the same call are routed to the

same server. The load balancer has the freedom to

pick a server only on the first request of a call. All

subsequent requests corresponding to the call must

go to the same server. This allows all requests

corresponding to the same session to efficiently

access state corresponding to the session.

Our new load balancing algorithms are based on

assigning calls to servers by picking the server with

the (estimated) least amount of work assigned but

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Effective SIP Servers Load Balancing 69

not yet completed. While the concept of assigning

work to servers with the least amount of work left

to do has been applied in other contexts [13],

[27],the specifics of how to do this efficiently for a

real application are often not at all obvious. The

system needs some method to reliably estimate the

amount of work that a server has left to do at the

time load balancing decisions are made.

In our system, the load balancer can estimate the

work assigned to a server based on the requests it

has assigned to the server and the responses it has

received from the server. All responses from

servers to clients first go through the load balancer

which forwards the responses to the appropriate

clients. By monitoring these responses, the load

balancer can determine when a server has finished

processing a request or call and update the

estimates it is maintaining for the work assigned to

the server.

1) Call-Join-Shortest-Queue: The Call-Join-

Shortest-Queue (CJSQ) algorithm estimates the

amount of work a server has left to do based on the

number of calls (sessions) assigned to the server.

Counters are maintained by the load balancer

indicating the number of calls assigned to each

server. When a new INVITE request is received

(which corresponds to a new call), the request is

assigned to the server with the lowest counter, and

the counter for the server is incremented by one.

When the load balancer receives a200 OK response

to the BYE corresponding to the call, it knows that

the server has finished processing the call and

ecrements the counter for the server.

A limitation of this approach is that the number of

calls assigned to a server is not always an accurate

measure of the load on a server. There may be long

idle periods between the transactions in a call. In

addition, different calls may consist of different

numbers of transactions and may consume different

amounts of server resources. An advantage of

CJSQ is that it can be used in environments in

which the load balancer is aware of the calls

assigned to servers but does not have an accurate

estimate of the transactions assigned to servers.

2) Transaction-Join-Shortest-Queue: An

alternative method is to estimate server load based

on the number of transactions (requests) assigned

to the servers. The Transaction-Join-Shortest-

Queue (TJSQ) algorithm estimates the amount of

work a server has left to do is based on the number

of transactions (requests) assigned to the server.

Counters are maintained by the load balancer

indicating the number of transactions assigned to

each server. New calls are assigned to servers with

the lowest counter.

A limitation of this approach is that all transactions

are weighted equally. In the SIP protocol, INVITE

requests are more expensive than BYE requests,

since the INVITE transaction state machine is more

complex than the one for non-INVITE transactions

(such as BYE). This difference in processing cost

should ideally be taken into account in making load

balancing decisions.

3) Transaction-Least-Work-Left: The

Transaction- Least-Work-Left (TLWL) algorithm

addresses this issue by assigning different weights

to different transactions depending on their relative

costs. It is similar to TJSQ with the enhancement

that transactions are weighted by relative overhead;

in the special case that all transactions have the

same expected overhead, TLWL and TJSQ are the

same. Counters are maintained by the load balancer

indicating the weighted number of transactions

assigned to each server. New calls are assigned to

the server with the lowest counter. A ratio is

defined in terms of relative cost of INVITE to BYE

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

P. Harikrishna, K. Vasanth Kumar and P. Suresh Babu 70

transactions. Thus far, our presentation of the load

balancing algorithms assumes that the servers have

similar processing capacities. However, this may

not always be the case. Some servers may be more

powerful than others; other servers may have

substantial background jobs that consume cycles.

In these situations, the load balancer could assign a

new call to the server with the lowest value of

estimated work left to do (as determined by the

counters) divided by the capacity of the server; this

applies to CJSQ, TJSQ, and TLWL.

In some cases, though, the load balancer might not

know the capacity of the servers. For these

situations, our new algorithms have the robustness

to automatically adapt to heterogeneous back-end

servers with over 60% higher through puts than the

previous algorithms we tested.

CJSQ, TJSQ, and TLWL are all novel load

balancing algorithms. In addition, we are not aware

of any previous work which has successfully

adapted least work left algorithms for load

balancing with SARA.

IV. EXPERIMENTAL ENVIRONMENT

We describe here the hardware and software that

we use, our experimental methodology, and the

metrics we measure.

SIP Software: For client-side workload generation,

we use the open source SIPp and Asterisk SIP load

generator tool, SIPp is the defacto standard for

generating SIP load. SIPp is a configurable packet

generator, extensible via a simple XML

configuration language. It uses an efficient event-

driven architecture but is not fully RFC compliant

(e.g., it does not do full packet parsing). It can thus

emulate either a client (UAC) or server (UAS), but

at many times the capacity of a standard SIP end

host. For the back-end server, we use a

commercially available SIP server.

Hardware and System Software: We conduct

experiments using two different types of machines,

both of which are IBM x-Series rack-mounted

servers. Table I summarizes the hardware and

software configuration for our test bed.

TABLE I: HARDWARE TESTBED

CHARACTERISTICS

Eight of the servers have two processors; however,

for our experiments, we use only one processor. All

machines are interconnected using a gigabit

Ethernet switch.

Workload: The workload we use is SIPp’s simple

SIP UAC call model consisting of an INVITE,

which the server responds to with 100 TRYING,

180 RINGING, and 200 OK responses. The client

then sends an ACK request which creates the

session. After a variable pause to model call hold

times, the client closes the session using a BYE

which the server responds to with a 200 OK

response. Calls may or may not have pause times

associated with them, intended to capture the

variable call duration of SIP sessions. In our

experiments, pause times are normally distributed

with a mean of one minute and a variance of 30

seconds. While simple, this is a common

configuration used in SIP performance testing.

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Effective SIP Servers Load Balancing 71

Currently no standard SIP workload model exists,

although SPEC is attempting to define one [30].

Methodology: Each run lasts for 3 minutes after a

warm-up period of 10 minutes. There is also a

ramp-up phase until the experimental rate is

reached. The request rate starts at 1 cps and

increases by x cps every second, where x is the

number of back-end nodes. Thus, if there are 8

servers, after 5 seconds, the request rate will be 41

cps. If load is evenly distributed, each node will see

an increase in the rate of received calls of one

additional cps until the experimental rate is

reached. After the experimental rate is reached, it is

sustained. SIPp is used in open-loop mode; calls

are generated at the configured rate regardless of

whether the other end responds to them.

Metrics: We measure both throughput and

response time. We define throughput as the number

of completed requests per second. The peak

throughput is defined as the maximum throughput

which can be sustained while successfully handling

more than 99.99% of all requests. Response time is

defined as the length of time between when a

request (INVITE or BYE) is sent and the successful

200 OK is received.

Component Performance: We have measured the

throughput of a single SIPp node in our system to

be 2925 calls per second (cps) without pause times

and 2098 cps with pause times. The peak

throughput for the back-end SIP server is about 300

cps in our system; this figure varies slightly

depending on the workload. Surprisingly, the peak

throughput is not affected much by pause times.

While we have observed that some servers can be

adversely affected by pause times, we believe other

overheads dominate and obscure this effect in the

server we use.

V. RESULTS

In this section, we present in detail the

experimental results of the load balancing

algorithms defined in Section III.

A. Response Time

We observe significant differences in the response

times of the different load balancing algorithms.

Figure-2 shows the average response time for each

algorithm versus offered load measured for the

INVITE transaction.

Fig.2: Average Response Time for INVITE

Note especially that the Y axis is in logarithmic

scale. In this experiment, the load balancer

distributes requests across 8 back-end SIP server

nodes.

The algorithms cluster into three groups: TLWL

offer the best performance; TJSQ offers moderate

performance; and CJSQ results in the worst

performance.

As the system approaches peak throughput, the

performance advantage of the first group of

algorithms increases to two orders of magnitude.

Similar trends are seen in Figure 3, which shows

average response time for each algorithm vs.

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

P. Harikrishna, K. Vasanth Kumar and P. Suresh Babu 72

offered load for BYE transactions, again using 8

back-end SIP server nodes. BYE transactions

consume fewer resources than INVITE transactions

resulting in lower average response times. TLW

Land TJSQ provide the lowest average response

times.

Fig.3: Average Response Time for BYE

However, the differences in response times for the

various algorithms are smaller than is the case with

INVITE transactions. This is largely because of

SARA. The load balancer has freedom to pick the

least loaded server for the first INVITE transaction

of a call. However, a BYE transaction must be sent

to the server which is already handling the call. The

significant improvements in response time that

TLW Land TJSQ provide present a compelling

reason for systems such as these to use our

algorithms.

B. Throughput

We now examine how our load balancing

algorithms perform in terms of how well

throughput scales with increasing numbers of back-

end servers. In the ideal case, we would hope to see

8 nodes provide 8 times the single-node

performance. Recall that the peak throughput is the

maximum throughput which can be sustained while

successfully handling more than 99.99% of all

requests and is approximately 300 cps for a back-

end SIP server node. Therefore, linear scalability

suggests a maximum possible throughput of about

2400 cps for8 nodes. Figure 4 shows the peak

throughputs for the various algorithms using 8

back-end nodes. Several interesting results are

illustrated in this graph.

Fig.4: Peak Throughput of 3 Algorithms

Fig.5: Peak throughput vs. # of nodes (TLWL)

TLWL achieves linear scalability and results in the

highest peak throughput of 2439 cps. The same

three algorithms resulted in the best response times

and peak throughput. Response times may not be

the most reliable measure of load on the servers. If

the load balancer weights the most recent response

time(s) too heavily, this might not provide enough

information to determine the least loaded server.

On the other hand, if the load balancer gives

significant weight to response times in the past, this

makes the algorithm too slow to respond to

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Effective SIP Servers Load Balancing 73

changing load conditions. A server having the

lowest weighted average response time might have

several new calls assigned to it resulting in too

much load on the server before the load balancer

determines that it is no longer the least loaded

server. In contrast, when a call is assigned to a

server using TLWL or TJSQ, the load balancer

takes this information immediately into account

when making future load balancing decisions.

Therefore, TLWL and TJSQ would not encounter

this problem.

Calls-Join-Shortest-Queue (CJSQ) is significantly

worse than the others, since it does not distinguish

call hold times in the way that the transaction-based

algorithms do. Experiments we ran that did not

include pause times (not shown due to space

limitations) showed CJSQ providing very good

performance, comparable to TJSQ. This is perhaps

not surprising since, when there are no pause times,

the algorithms are effectively equivalent. However,

the presence of pause times can lead CJSQ to

misjudgments about allocation that end up being

worse than a static allocation such as Hash. TJSQ

does better than most of the other algorithms. This

shows that knowledge of SIP transactions and

paying attention to the call hold time can make a

significant difference, particularly in contrast to

CJSQ.

We determined that the load balancer can support

up to about 5400 cps before becoming overloaded.

Given that the peak throughput of the back-end SIP

server that we use is about 300 cps, the prototype

should be able to support about17 servers of this

type. The load balancer was not a bottleneck in any

of the experiments described in this paper.

In many deployments, it is not realistic to expect

that all nodes of a cluster have the same server

capacity. Some servers may be more powerful than

others. Other servers maybe running background

tasks which limit the CPU resources which can be

devoted to SIP. Our new algorithms adapt to

heterogeneous back ends much more effectively

than the prior art ones. Experiments we ran indicate

that TLWL achieves near optimal throughput when

the back ends differ in processing power by as

much as 50% which is over 60%higher throughput

than the prior art algorithms we tested.

VII. SUMMARY AND CONCLUSIONS

This paper introduces three novel approaches to

load balancing in SIP server clusters. We present

the design, implementation, and evaluation of a

load balancer for cluster based SIP servers. Our

load balancer performs session-aware request

assignment (SARA) to ensure that SIP transactions

are routed to the proper back-end node that

contains the appropriate session state. We presented

three novel algorithms: Call Join Shortest Queue

(CJSQ), Transaction Join Shortest Queue (TJSQ),

and Transaction Least-Work-Left (TLWL).

The TLWL algorithms result in the best

performance, both in terms of response time and

throughput, followed by TJSQ.TJSQ has the

advantage that no knowledge is needed of relative

overheads of different transaction types. The most

significant performance differences were in

response time. For SIP applications that require

good quality of service, these dramatically lower

response times are significant. We showed that

these algorithms provide significantly better

response time by distributing requests across the

cluster more evenly, thus minimizing occupancy

and the corresponding amount of time a particular

request waits behind others for service. TLWL

provides 25%better through put than other

algorithms. TJSQ provides nearly the same level of

performance. CJSQ performs poorly since it does

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

P. Harikrishna, K. Vasanth Kumar and P. Suresh Babu 74

not distinguish transactions from calls and does not

consider variable call hold times.

Our results show that by combining knowledge of

the SIP protocol, recognizing variability in call

lengths, distinguishing transactions from calls, and

accounting for the difference in processing costs for

different SIP transaction types, load balancing for

SIP servers can be significantly improved.

The dramatic reduction in response times achieved

by both TLWL and TJSQ, compared to other

approaches, suggest that they should be applied to

other domains besides SIP, particularly if response

time is crucial. Our results are influenced by the

fact that SIP requires SARA. However, even where

SARA is not needed, variants of TLWL and TJSQ

could be deployed and may offer significant

benefits over commonly deployed load balancing

algorithms based on round robin, hashing, or

response times. A key aspect of TJSQ and TLWL

is that they track the number of uncompleted

requests assigned to each server, in order to make

better assignments. This can be applied to load

balancing systems in general. In addition, if the

load balancer can reliably estimate the relative

overhead for requests that it receives, this can

further improve performance.

REFERENCES

1. Darrell C. Anderson, Jeffrey S. Chase, and

Amin Vahdat. Interposed request routing

for scalable network storage. In USENIX

Operating Systems Design and

Implementation (OSDI), San Diego,

California, USA, October 2000.

2. Mohit Aron, Peter Druschel, and Willy

Zwaenepoel. Efficient support for P-HTTP

in cluster-based Web servers. In

Proceedings of the USENIX 1999 Annual

Technical Conference, Monterey, CA,

June 1999.

3. Mohit Aron, Darren Sanders, Peter

Druschel, and Willy Zwaenepoel. Scalable

content-aware request distribution in

cluster-based network servers. In

Proceedings of the USENIX 2000 Annual

Technical Conference, San Diego, CA,

June 2000.

4. Valeria Cardellini, Emiliano Casalicchio,

Michele Colajanni, and Philip S. Yu. The

state of the art in locally distributed Web-

server systems. ACM Computing Surveys,

34(2):263–311, June 2002.

5. Jim Challenger, Paul Dantzig, and Arun

Iyengar. A scalable and highly available

system for serving dynamic data at

frequently accessed Web sites. In

Proceedings of ACM/IEEE SC98,

November 1998.

6. Gianfranco Ciardo, Alma Riska, and

Evgenia Smirni. EQUILOAD: A load

balancing policy for clustered Web

servers. Performance Evaluation, 46(2-

3):101–124, 2001.

7. Dan Dias, William Kish, Rajat Mukherjee,

and Renu Tewari. A scalable and highly

available Web server. In Proceedings of

the 1996 IEEE Computer Conference

(COMPCON), February 1996.

8. F5. F5 introduces intelligent traffic

management solution to power service

providers’ rollout of multimedia services

(http://www.f5.com/news-press-

events/press/2007/20070924.html).

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Effective SIP Servers Load Balancing 75

9. Zongming Fei, Samrat Bhattacharjee,

Ellen Zegura, and Mustapha Ammar. A

novel server selection technique for

improving the response time of a

replicated service. In Proceedings of IEEE

INFOCOM, 1998.

10. Hanhua Feng, Vishal Misra, and Dan

Rubenstein. PBS: A unified priority-based

scheduler. In Proceedings of ACM

Sigmetrics, San Diego, CA, June 2007.

11. Richard Gayraud and Olivier Jacques.

SIPp. http://sipp.sourceforge.net.

12. G. Goldszmidt, G. Hunt, R. King, and R.

Mukherjee. Network dispatcher: A

connection router for scalable Internet

services. In Proceedings of the 7th

International World Wide Web

Conference, Brisbane, Australia, April

1998.

13. N. Griffiths, “Nmon: A free tool to

analyze AIX and Linux performance,”

2006 [Online].Available:

http://www.ibm.com/developerworks/aix/l

ibrary/au-analyze_aix/index.html

14. M. Harchol-Balter, M. Crovella, and C. D.

Murta, “On choosing a task assignment

policy for a distributed server system,” J.

Parallel Distrib.Comput., vol. 59, no. 2,

pp. 204–228, 1999.

15. V. Hilt and I. Widjaja, “Controlling

overload in networks of SIP servers,” in

Proc. IEEE ICNP, Orlando, FL, Oct. 2008,

pp. 83–93.IBM, “Application switching

with Nortel Networks Layer 2–7 Gigabit

Ethernet switch module for IBM Blade

Center,” 2006

[Online].Available:http://www.redbooks.i

bm.com/abstracts/redp3589.html?Open

16. A. Iyengar, J. Challenger, D. Dias, and P.

Dantzig, “High-performance Web site

design techniques,” IEEE Internet

Comput., vol. 4, no. 2, pp. 17–26,

Mar./Apr. 2000.

17. T. T. Kwan, R. E. McGrath, and D. A.

Reed, “NCSA’s World Wide Web server:

Design and performance,” Computer, vol.

28, no. 11, pp.68–74, Nov. 1995.

18. D. Mosedale,W. Foss, and R.McCool,

“Lessons learned administering

Netscape’s Internet site,” IEEE Internet

Comput., vol. 1, no. 2, pp.28–35,

Mar./Apr. 1997.

19. E. Nahum, J. Tracey, and C. P. Wright,

“Evaluating SIP proxy server

performance,” in Proc. 17th NOSSDAV,

Urbana–Champaign, IL, Jun.2007, pp. 79–

85.

20. Foundry Networks, “ServerIron switches

support SIP load balancing VoIP/SIP

traffic management solutions,” Accessed

Jul. 2007

[Online].Available:http://www.foundrynet

.com/solutions/sol-app-switch/solvoip-sip/

Nortel Networks, “Layer 2–7 GbE switch module

for IBM Blade-Center,” Accessed Jul. 2007

[Online]. Available: http://www-

132.ibm.com/webapp/wcs/stores/servlet/ProductDi

splay?productId=4611686018425170446&storeId=

1&langId=-1&catalogId=-840

BIOGRAPHIES

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

P. Harikrishna, K. Vasanth Kumar and P. Suresh Babu 76

Mr.P.Harikrishna is

pursuing his M.Tech

in Computer Science

and Engineering at

Kaushik College of

Engineering,

Visakhapatnam. His

research interest includes VoIP/SIP Server

Clustering and Load Balancing.

Sri.K.VasanthKumar, is

an excellent teacher and

received MS

(Information Systems &

Applications) from

Bharathidasan

University,

Tiruchirapalli, Tamil Nadu and M.Tech (CSE)

from JNTU Kakinada, Andhra Pradesh. He is

working as Associate

Professor in Department of

CSE & IT, Kaushik college

of Engineering. He has 7

years of teaching

experience in various

engineering colleges and 4 years of industrial

experience. To his credit he has 1 International

publication and 4 workshops. His areas of interest

include Datawarehousing and Network Security.

Sri.P.SureshBabu, B.Tech, M.E., CSI Associate

Professor Department of Computer Science &

Engineering Kaushik College of Engineering,

Visakhapatnam, Andhra Pradesh. Teaching

Experience: 15 Years, Industrial Experience: 4

Years Sri.P.Suresh Babu, well known Author and

excellent teacher Received B.Tech(CSE) from

Acharya Nagarjuna university, GUNTUR, Andhra

Pradesh and M.E(CSE) from Sathyabama

university, Chennai is working as Associate

Professor Department of Computer Science and

Engineering, Kaushik college of Engineering, He is

an active member of CSI. To his credit 7

International publications, 2 national publications,

2 International conferences and 4 workshops. His

areas of interest include Artificial Intelligence and

Fuzzy Logics.

