
International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

www.forum4researchers.com 12

I. Introduction

Cloud computing is the delivery of computing

services over the Internet. Cloud services allow

individuals and businesses to use software and

hardware that are managed by third parties at

remote locations. Examples of cloud services

include online file storage, social networking sites,

webmail, and online business applications. The

cloud computing model allows access to

information and computer resources from anywhere

that a network connection is available. Cloud

computing provides a shared pool of resources,

including data storage space, networks, computer

processing power, and specialized corporate and

user applications. The following definition of cloud

computing has been developed by the U.S.

National Institute of Standards and Technology

(NIST) Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and

services) that can be rapidly provisioned and

released with minimal management effort or

service provider interaction. This cloud model

promotes availability and is composed of five

essential characteristics, three service models, and

four deployment models.

Deployment of cloud services

Cloud services are typically made available via a

private cloud, community cloud, public cloud or

hybrid cloud. Generally speaking, services

Abstract: Rebalancing for distributed systems such as cloud computing applications are quite common.
Applications are approaching with high challenges on how to transfer and where to store and compute data.
The most prevalent distributed file systems to deal with these challenges are the Hadoop. File System (HDFS)
which is a variant of the Google File System (GFS). However HDFS has two potential problems. The first
one is that it depends on a single name node to manage almost all operations of every data block in the file
system. As a result it can be a bottleneck resource and a single point of failure. The second potential problem
with HDFS is that it depends on TCP to transfer data. As has been cited in many studies TCP takes many
rounds before it can send at the full capacity of the links in the cloud. This results in low link utilization and
longer downloads times. To overcome these problems of HDFS we present a new distributed file system. Our
scheme uses a light weight front end server to connect all requests with many name nodes. This helps
distribute load of a single name node to many name nodes. Our second contribution is to use an efficient
protocol to send and route data. Our protocol can achieve full link utilization and hence decreased download
times. Based on simulation our protocol can outperform HDFS and hence GFS. Emerging distributed file
systems in production systems strongly depend on a central node for chunk reallocation. Experimented
algorithm is compared against a centralized approach in a production system and a competing distributed
solution presented in this part.
Keywords: Cloud architecture, resource allocation, distributed name node, Hadoop.

BALANCING BLOCKS FOR DISTRIBUTED FILE
SYSTEMS IN CLOUD

Harika Pratibha Kovvuri1, Chinabusi Koppula2

1. M.Tech Scholar, Department of CSE, Kaushik College of Engineering, Visakhapatnam, AP, India.
2. Assistant Professor, Department of CSE, Kaushik College of Engineering, Visakhapatnam, AP,India.

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Balancing blocks for distributed file systems in cloud 13

provided by a public cloud are offered over the

Internet and are owned and operated by a cloud

provider. Some examples include services aimed at

the general public, such as online photo storage

services, e-mail services, or social networking sites.

However, services for enterprises can also be

offered in a public cloud. In a private cloud, the

cloud infrastructure is operated solely for a specific

organization, and is managed by the organization or

a third party. In a community cloud, the service is

shared by several organizations and made available

only to those groups. The infrastructure may be

owned and operated by the organizations or by a

cloud service provider.

Cloud services are popular because they can reduce

the cost and complexity of owning and operating

computers and networks. Since cloud users do not

have to invest in information technology

infrastructure, purchase hardware, or buy software

licenses, the benefits are low up-front costs, rapid

return on investment, rapid deployment,

customization, flexible use, and solutions that can

make use of new innovations. In addition, cloud

providers that have specialized in a particular area

(such as e-mail) can bring advanced services that a

single company might not be able to afford or

develop. Some other benefits to users include

scalability, reliability, and efficiency. Scalability

means that cloud computing offers unlimited

processing and storage capacity. The cloud is

reliable in that it enables access to applications and

documents anywhere in the world via the Internet.

Cloud computing is often considered efficient

because it allows organizations to free up resources

to focus on innovation and product development.

A large - scale distributed file system is in

a load - balanced state if each chunk server hosts no

more than A chunks. In our proposed algorithm,

each chunk server node i first estimate whether it is

under loaded (light) or overloaded (heavy) without

global knowledge. A node is light if the number of

chunks it hosts is smaller than the threshold of

(1−ΔL)A (where 0≤ΔL < 1).

BASIC ALGORITHMS:

In the basic algorithm, each node implements the

gossip-based aggregation protocol in to collect the

load statuses of a sample of randomly selected

nodes. Specifically, each node contacts a number of

randomly selected nodes in the system and builds a

vector denoted by V. A vector consists of entries,

and each entry contains the ID, network address

and load status of a randomly selected node. Using

the gossip - based protocol, each node exchanges

its locally maintained vector with its neighbors

until its vector has s entries. It then calculates the

average load of the s nodes denoted by A _ i and

regards it as an estimation of A. The nodes perform

our load rebalancing algorithm periodically, and

they balance their loads and minimize the

movement cost in a best - effort fashion

PHYSICAL NETWORK LOCALITY:

A DHT network is an overlay on the application

level. The logical proximity abstraction derived

from the DHT does not necessarily match the

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Harika Pratibha Kovvuri and Chinabusi Koppula 14

physical proximity information in reality. That

means a message traveling between two neighbors

in a DHT overlay may travel a long physical

distance through several physical network links. In

the load balancing algorithm, a light node i may

rejoin as a successor of a remote heavy node j.

Then, the requested chunks migrated from j to i

need to raverse several physical network links,

thus generating considerable network traffic and

consuming significant network resources (i.e., the

buffers in the switches on a communication path

for transmitting a file chunk from a source node to

a destination node). We improve our proposal by

exploiting physical network locality. Basically,

instead of collecting a single vector per algorithmic

round, each light node i gathers NV vectors..

Our objective in the current study is to design a

load rebalancing algorithm to reallocate file chunks

such that the chunks can be distributed to the

system as uniformly as possible while reducing the

movement cost as much as possible. Here, the

movement cost is defined as the number of chunks

migrated to balance the loads of the chunkserver.

Let A be the ideal number of chunks that any

chunkserver i 2 V is required to manage in a

system-wide load-balanced state, that is,

Then, our load rebalancing algorithm aims to

minimize the load imbalance factor in each chunk

server i as follows

where Li denotes the load of node i (i.e., the

number of file chunks hosted by i) and k represents

the absolute value function. Note that

“chunkservers” and “nodes” are interchangeable in

this paper

TAKING ADVANTAGE OF NODE

HETEROGENEITY:

Nodes participating in the file system are possibly

heterogeneous in terms of the numbers of file

chunks that the nodes can accommodate. We

assume that there is one bottleneck resource for

optimization although a node’s capacity in practice

should be a function of computational power,

network bandwidth and storage space. In the

distributed file system for Map Reduce - based

applications, the load of a node is typically

proportional to the number of file chunks the node

possesses. Thus, the rationale of this design is to

ensure that the number of file chunks managed by

node i is proportional to its capacity

where ᵧ is the load per unit capacity a node should

manage in the load balanced state and

where m is the number of file chunks stored in the

system. As mentioned previously, in the distributed

file system for Map Reduce-based applications, the

load of a node is typically proportional to the

number of file chunks the node possesses. Thus, the

rationale of this design is to ensure that the number

of file chunks managed by node i is proportional to

its capacity. To estimate the aggregate, our

proposal again relies on the gossip-based

aggregation protocol in computing the value.

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Balancing blocks for distributed file systems in cloud 15

Algorithm 4 in Appendix C, which is available in

the online supplemental material, presents the

enhancement for Algorithm 1 to exploit node

heterogeneity, which is similar to Algorithm 1 and

is self-explanatory. If a node i estimates that it is

light (i.e., Li < ð1 LÞAei), i then rejoins as a

successor of a heavy node j. i seeks j based on its

sampled node set V. i sorts the set in accordance

with Lt , the load per capacity unit a node currently

receives, for all t 2 V. When node i notices that it is

the kth least-loaded node (Line 6 in Algorithm 4), it

then identifies node j and rejoins as a successor of

node j. Node j is the least-loaded node in the set of

nodes P V having the minimum cardinality, where

1) the nodes in P are heavy, and 2) the total excess

load of nodes in P is not less than Pk jth light node

in V j¼1 Ae j (Line 7 in Algorithm 4). Here, Pk jth

light node in Vj¼1Aej indicates the sum of loads

that the top-k light nodes in V will manage in a

load balanced system state.

Managing Replicas In distributed file systems (e.g.,

Google GFS and Hadoop HDFS), a constant

number of replicas for each file chunk are

maintained in distinct nodes to improve file

availability with respect to node failures and

departures. Our current load-balancing algorithm

does not treat replicas distinctly. It is unlikely that

two or more replicas are placed in an identical node

because of the random nature of our load

rebalancing algorithm. More specifically, each

underloaded node samples a number of nodes, each

selected with a probability of 1n, to share their

loads (where n is the total number of storage

nodes). Given k replicas for each file chunk (where

k is typically a small constant, and k ¼ 3 in GFS),

the probability that k0 replicas (k0 k) are placed in

an identical node due to migration of our load-

balancing algorithm is ð1 nÞk0 independent of

their initial locations. For example, in a file system

with n ¼ 1;000 storage nodes and k ¼ 3, then the

probabilities are only 1106 and 1109 for two and

three replicas stored in the same node, respectively.

Consequently, the probability of more than one

replica appearing in a node due to our proposal is

approximately (as k << n)

We have investigated the percentage of nodes

storing redundant replicas due to our proposal. In

our experiments, the number of file chunks and the

number of nodes in the system are m ¼ 10;000 and

n ¼ 1;000, respectively. (Details of the

experimental settings are discussed in Section 4.)

Among the m ¼ 10,000 file chunks, we investigate

in the experiment k ¼ 2; 4; 8 replicas for each file

chunk; that is, there are 5,000, 2,500 and 1,250

unique chunks in the system, respectively. The

experimental results indicate that the number of

nodes managing more than one redundant chunk

due to our proposal is very small. Specifically, each

node maintains no redundant replicas for k ¼ 2; 4,

and only 2 percent of nodes store ≥ 2 redundant

replicas for k ¼ 8.

IMPLEMENTATION EXPERIMENTAL

SETUP

I have implemented the proposal in Hadoop HDFS

0.21.0, and assessed our implementation against the

load balancer in HDFS. The implementation is

demonstrated through a small - scale cluster

environment consisting of a single, dedicated name

node and 25 data nodes, each with Ubuntu10.10].

Specifically, the name node is equipped with Intel

Core 2 Duo E7400 processor and 3 Gbytes RAM.

As the number of file chunks in our experimental

environment is small, the RAM size of the name

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Harika Pratibha Kovvuri and Chinabusi Koppula 16

node is sufficient to cache the entire name node

process and the metadata information, including the

directories and the locations of file chunks. In the

experimental environment, a number of clients are

established to issue requests to the name node.

There quests include commands to create

directories with randomly designated names, to

remove directories arbitrarily chosen, etc.

Particularly, the size of a file chunk in the

experiments is set to 16 Mbytes. Compared to each

experimental run requiring 20 to 60 minutes,

transferring these chunks takes no more than 328

seconds ≈ 5.5 minutes in case the network

bandwidth is fully utilized. The initial placement of

the 256 files chunks

The performance of our algorithm is evaluated

through computer simulations. Our simulator is

implemented with P threads. In the simulations, we

carry out our proposal based on the Chord DHT

protocol and the gossip-based aggregation protocol.

In the default setting, the number of nodes in the

system is n ¼ 1000, and the number of file chunks

is m ¼ 10,000. To the best of our knowledge, there

are no representative realistic workloads available.

Thus, the number of file chunks initially hosted by

a node in our simulations follows the geometric

distribution, enabling stress tests as suggested in

[15] for various load rebalancing algorithms. Fig. 3

shows the cumulative distribution functions (CDF)

of the file chunks in the simulations, where

workloads A, B, C, and D represent four distinct

geometric distributions. Specifically, these

distributions indicate that a small number of nodes

initially possess a large number of chunks. The four

workloads exhibit different variations of the

geometric distribution. We have compared our

algorithm with the competing algorithms called

centralized matching and distributed matching,

respectively. In Hadoop HDFS, a standalone load-

balancing server (i.e., balancer) is employed to

rebalance the loads of storage nodes. The server

acquires global information on the file chunks

distributed in the system from the name node that

manages the metadata of the entire file system.

Based on this global knowledge, it partitions the

node set into two subsets, where one (denoted by

O) contains overloaded nodes, and the other

(denoted by U) includes the underloaded nodes.

Conceptually, the balancer randomly selects one

heavy node i 2 O and one light node j 2 U to

reallocate their loads. The reallocation terminates if

the balancer cannot find a pair of heavy and light

nodes to reallocate their loads. Notably, to exploit

physical network locality and thus reduce network

traffic, the balancer first pairs i and j if i and j

appear in the same rack. If a node in a rack remains

unbalanced, and if it cannot find any other node in

the same rack to pair, then the node will be

matched with another node, in a foreign rack. The

balancer in HDFS does not differentiate different

locations of foreign racks when performing the

matches. In our simulations, each rack has 32 nodes

in default. On the contrary, a storage node i in the

decentralized random matching algorithm

independently and randomly selects another node j

to share its load if the ratio of i’s load to j’s is

smaller (or larger) than a predefined threshold (or

1). As suggested by [14], is greater than 0 and not

more than 14. In our simulations, ¼ 14. To be

comparable, we also implement this algorithm on

the Chord DHT. Thus, when node i attempts to

share the load of node j, node i needs to leave and

rejoin as node j’s successor. In our algorithm, we

set L ¼ U ¼ 0:2 in default. Each node maintains

nV vectors, each consisting of s ¼ 100 random

samples of nodes (entries in a vector may be

duplicated), for estimating A. nV ¼ 1 in default.

The cloud network topology interconnecting the

storage nodes simulated is a 2D torus direct

network, as suggested by the recent studies in [3]

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Balancing blocks for distributed file systems in cloud 17

and [4]. (In Appendix E, which is available in the

online supplemental material, we also investigate

the performance effects on the hyper cube topology

in [9].) Finally, unless otherwise noted, each node

has an identical capacity in the simulations. Due to

space limitation, we report the major performance

results in Section 4.2. Extensive performance

results can be found in the appendix, which is

available in the online supplemental material,

including the effect of varying the number of file

chunks (Appendix G, which is available in the

online supplemental material), the effect of

different numbers of samples (Appendix H, which

is available in the online supplemental material),

the effect of different algorithmic rounds

(Appendix I, which is available in the online

supplemental material) and the effect of system

dynamics (Appendix J, which is available in the

online supplemental material). In the experimental

environment, a number of clients are established to

issue requests to the name node. The requests

include commands to create directories with

randomly designated names, to remove directories

arbitrarily chosen, etc

Execution Results

Presents the simulation results of the load

distribution after performing the investigated load-

balancing algorithms. Here, the nodes simulated

have identical capacity. The simulation results

show that centralized matching performs very well

as the load balancer gathers the global information

from the name node managing the entire file

system. Since A ¼ 10 is the ideal number of file

chunks a node should manage in a load-balanced

state, in centralized matching, most nodes have 10

chunks. In contrast, distributed matching performs

worse than centralized matching and our proposal.

This is because each node randomly probes other

nodes without global knowledge about the system.

Although our proposal is distributed and need not

require each node to obtain global system

knowledge, it is comparable with centralized

matching and remarkably outperforms distributed

matching in terms of load imbalance factor. Fig

shows the movement costs of centralized matching,

distributed matching, and our algorithm, where the

movement costs have been normalized to that of

centralized matching (indicated by the horizontal

line in the figure). Clearly, the movement cost of

our proposal is only 0.37 times the cost of

distributed matching. Our algorithm matches the

top least-loaded light nodes with the top most-

loaded heavy nodes, leading to a fewer number of

file chunks migrated. In contrast, in distributed

matching, a heavy node i may be requested to

relieve another node j with a relatively heavier

load, resulting in the migration of a large number of

chunks originally hosted by i to i’s successor. We

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Harika Pratibha Kovvuri and Chinabusi Koppula 18

also observe that our proposal may incur slightly

more movement cost than that of centralized

matching. This is because in our proposal, a light

node needs to shed its load to its successor. The

total number of messages generated by a load

rebalancing algorithm, where the message

overheads in distributed matching and our proposal

are normalized to that of centralized matching. The

simulation results indicate that centralized

matching introduces much less message overhead

than distributed matching and our proposal, as each

node in centralized matching simply informs the

centralized load balancer of its load and capacity.

On the contrary, in distributed matching and our

proposal, each node probes a number of existing

nodes in the system, and may then reallocate its

load from/to the probed nodes, introducing more

messages. We also see that our proposal clearly

produces less message overhead than distributed

computing. Specifically, any node i in our proposal

gathers partial system knowledge from its

neighbors [26], [27], whereas node i in distributed

matching takes Oðlog nÞ messages to probe a

randomly selected node in the network. Both

distributed matching [14] and our proposal depend

on the Chord DHT network in the simulations.

However, nodes may leave and rejoin the DHT

network for load rebalancing, thus increasing the

overhead required to maintain the DHT structure.

Thus, we further investigate the number of

rejoining operations. Note that centralized

matching introduces no rejoining overhead because

a node in centralized matching does not need to

self-organize and self-heal for rejoining operations.

Illustrates the simulation results, where the number

of rejoining operations caused by our algorithm is

normalized to that of distributed matching

(indicated by the horizontal line). We see that the

number of rejoining operations in distributed

matching can be up to two times greater than that

of our algorithm. This is because a heavy node in

distributed matching may leave and rejoin the

network to reduce the load of another heavy node.

On the contrary, in our proposal, only light nodes

rejoin the system as successors of heavy nodes. Our

algorithm attempts to pair light and heavy nodes

precisely, thus reducing the number of rejoining

operations. In Section 3.2.3, we improve our basic

load rebalancing algorithm by exploiting physical

network locality. The network traffic introduced by

centralized matching.

Distributed matching, and our proposal is thus

investigated. Specifically, we define the weighted

movement cost (WMC) as follows.

where M denotes the set of file chunks selected for

reallocation by a load rebalancing algorithm, size i

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Balancing blocks for distributed file systems in cloud 19

is the size of file chunk i, and link i represents the

number of physical links chunk i traverses. In the

simulations, the size of each file chunk is identical.

We assume that size i ¼ 1 for all i2Mwithout loss

of generality. Hence, based on (7), the greater the

WMC, the more physical network links used for

load reallocation

IMPLEMENTATION AND MEASUREMENT

Experimental Environment Setup We have

implemented our proposal in Hadoop HDFS 0.21.0,

and assessed our implementation against the load

balancer in HDFS. Our implementation is

demonstrated through a small-scale cluster

environment (Fig. 11a) consisting of a single,

dedicated name node and 25 data nodes, each with

U buntu 10.10. Specifically, the name node is

equipped with Intel Core 2 Duo E7400 processor

and 3 Gbytes RAM. As the number of file chunks

in our experimental environment is small, the RAM

size of the namenode is sufficient to cache the

entire namenode process and the metadata

information, including the directories and the

locations of file chunks. In the experimental

environment, a number of clients are established to

issue requests to the namenode. The requests

include commands to create directories with

randomly designated names, to remove directories

arbitrarily chosen, etc. Due to the scarce resources

in our environment, we have deployed 4 clients to

generate requests to the namenode. However, this

cannot overload the namenode to mimic the

situation as reported in [8]. To emulate the load of

the namenode in a production system and

investigate the effect of the namenodes load on the

performance of a loadbalancing algorithm, we

additionally limit the processor cycles available to

the namenode by varying the maximum processor

utilization, denoted by M, available to the

namenode up to M¼1%; 2%; 8%; 16%; 32%; 64%;

99%. The lower processor availability to the name

node represents the less CPU cycles that the name

node can allocate to handle the clients’ requests and

to talk to the load balancer.

As data center networks proposed recently (e.g.,

[9]) can offer a fully bisection bandwidth, the total

number of chunks scattered in the file system in our

experiments is limited to 256 such that the network

bandwidth in our environment (i.e., all nodes are

connected with a 100 Mbps fast Ethernet switch) is

not the performance bottleneck. Particularly, the

size of a file chunk in the experiments is set to 16

Mbytes. Compared to each experimental run

requiring 20-60 minutes, transferring these chunks

takes no more than 16 256 8100 328 seconds 5:5

minutes in case the network bandwidth is fully

utilized. The initial placement of the 256 file

chunks follows the geometric distribution as

discussed in Section 4. For each experimental run,

we quantity the time elapsed to complete the load-

balancing algorithms, including the HDFS load

balancer and our proposal. We perform 20 runs for

a given M and average the time required for

executing a loadbalancing algorithm. Additionally,

the 5- and 95-percentiles are reported. For our

proposal, we let U ¼ L ¼ 0:2. Each datanode

performs 10 random samples. Note that 1) in the

experimental results discussed later, we favor

HDFS by dedicating a standalone node to perform

the HDFS load-balancing function. By contrast, our

proposal excludes the extra, standalone node. 2)

The datanodes in our cluster environment are

homogeneous, each with Intel Celeron 430 and 3

Gbytes RAM. We, thus, do not study the effect of

the node heterogeneity on our proposal. 3) We also

do not investigate the effect of network locality on

our proposal as the nodes in our environment are

only linked with a single switch. Our proposal

clearly outperforms the HDFS load balancer. When

the name node is heavily loaded (i.e., small M’s),

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Harika Pratibha Kovvuri and Chinabusi Koppula 20

our proposal remarkably performs better than the

HDFS load balancer. For example, if M = 1%, the

HDFS load balancer takes approximately 60

minutes to balance the loads of data nodes. By

contrast, our proposal takes nearly 20 minutes in

the case of M = 1%. Specifically, unlike the HDFS

load balancer, our proposal is independent of the

load of the name node

Summary:

A novel load-balancing algorithm to deal with the

load rebalancing problem in large-scale, dynamic,

and distributed file systems in clouds has been

presented in this paper. Our proposal strives to

balance the loads of nodes and reduce the

demanded movement cost as much as possible,

while taking advantage of physical network locality

and node heterogeneity. In the absence of

representative real workloads (i.e., the distributions

of file chunks in a large scale storage system) in the

public domain, we The experimental environment

and performance results, where (a) shows the setup

of the experimental environment, (b) indicates the

time elapsed of performing the HDFS load balancer

and our proposal, and (c) and (d) show the

distributions of file chunks for the HDFS load

balancer and our proposal, respectively investigated

the performance of our proposal and compared it

against competing algorithms through synthesized

probabilistic distributions of file chunks. The

synthesis workloads stress test the load-balancing

algorithms by creating a few storage nodes that are

heavily loaded. The computer simulation results are

encouraging, indicating that our proposed

algorithm performs very well. Our proposal is

comparable to the centralized algorithm in the

Hadoop HDFS production system and dramatically

outperforms the competing distributed algorithm in

[14] interms of load imbalance factor, movement

cost, and algorithmic overhead. Particularly, our

load-balancing algorithm exhibits a fast

convergence rate. The efficiency and effectiveness

of our design are further validated by analytical

models and a real implementation with a small-

scale cluster environment.

Conclusion

Cloud computing offers benefits for organizations

and individuals. There are also privacy and security

concerns. If you are considering a cloud service,

you should think about how your personal

information, and that of your customers, can best

be protected. Carefully review the terms of service

or contracts, and challenge the provider to meet

your needs. A novel load balancing algorithm to

deal with the load rebalancing problem in large -

scale, dynamic and distributed file systems in

clouds has been presented in this paper. Our

proposal strives to balance the loads of nodes and

reduce the demanded movement cost as much as

possible, while taking advantage of physical

network locality and node heterogeneity.

In the absence of representative real workloads in

the public domain, we have investigated the

performance of our proposal and compared it

against competing algorithms through synthesized

probabilistic distributions of file chunks. The

synthesis workloads stress test the load balancing

algorithms by creating a few storage nodes that are

heavily loaded. The computer simulation results are

encouraging, indicating that our proposed

algorithm performs very well. Our proposal is

comparable to the centralized algorithm in the

Hadoop HDFS production system and dramatically

outperforms the competing distributed algorithm

interms of load imbalance factor, movement cost,

and algorithmic overhead. Particularly, our load

balancing algorithm exhibits a fast convergence

rate. The efficiency and effectiveness of our design

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Balancing blocks for distributed file systems in cloud 21

are further validated by analytical models and a real

implementation with a small - scale cluster

environment.

References

1. 1. Hsiao,Tainan Chung, Hsueh-Yi ; Shen,

Haiying ,Chao, Yu-Chang,” Load Rebalancing

for Distributed File Systems in Clouds “,

Parallel And Distributed Systems, Vol –24

issue-5, may 2013.

2. H. Abu-Libdeh, P. Costa, A. Rowstron, G.

O’Shea, and A. Donnelly, “Symbiotic Routing

in Future Data Centers,” Proc. ACM

SIGCOMM ’10, pp. 51-62, Aug. 2010

3. I. Stoica, R. Morris, D. Liben-Nowell, D.R.

Karger, M.F. Kaashoek,F. Dabek, and H.

Balakrishnan, “Chord: A Scalable Peer-to-

PeerLookup Protocol for Internet

Applications,” IEEE/ACM Trans. Networking,

vol. 11, no. 1, pp. 17-21, Feb. 2003.

4. M. Raab and A. Steger, “Balls into Bins-A

Simple and Tight Analysis,” Proc. Second Int’l

Workshop Randomization and Approximation

Techniques in Computer Science, pp. 159-170,

Oct. 1998.

5. H. Shen and C.-Z. Xu, “Locality-Aware and

Churn-Resilient Load Balancing Algorithms in

Structured P2P Networks,” IEEE

Trans.Parallel and Distributed Systems, vol.

18, no. 6, pp. 849-862, June2007.

6. G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W.Vogels,

“Dynamo: Amazon’s Highly Available Key-

Value Store,”Proc. 21st ACM Symp.

Operating Systems Principles (SOSP ’07),pp.

205-220, Oct. 2007.

7. J.W. Byers, J. Considine, and M.

Mitzenmacher, “Simple Load Balancing for

Distributed Hash Tables,” Proc. First Int’l

Workshop Peer-to-Peer Systems (IPTPS ’03),

pp. 80-87, Feb. 2003.

8. H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C.

Huang, “Load Balance with Imperfect

Information in Structured Peer-to-Peer

Systems,”IEEE Trans. Parallel Distributed

Systems, vol. 22, no. 4, pp. 634-649,Apr. 2011.

9. M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.

Kermarrec, and M.V. Steen, “Gossip-Based

Peer Sampling,” ACM Trans. Computer

Systems, vol. 25, no. 3, Aug. 2007.

10. G.S. Manku, “Balanced Binary Trees for ID

Management and Load Balance in Distributed

Hash Tables,” Proc. 23rd ACM

Symp.Principles Distributed Computing

(PODC ’04), pp. 197-205, July 2004

11. A. Bharambe, M. Agrawal, and S. Seshan,

“Mercury: Supporting Scalable Multi-Attribute

Range Queries,” Proc. ACM SIGCOMM ’04,

pp. 353-366, Aug. 2004.

12. Y. Zhu and Y. Hu, “Efficient, Proximity-

Aware Load Balancing for DHT-Based P2P

Systems,” IEEE Trans. Parallel and Distributed

Systems, vol. 16, no. 4, pp. 349-361, Apr.

2005.

13. Q.H. Vu, B.C. Ooi, M. Rinard, and K.-L. Tan,

“Histogram-Based Global Load Balancing in

Structured Peer-to-Peer Systems,” IEEE Trans.

Knowledge Data Eng., vol. 21, no. 4, pp. 595-

608, Apr. 2009.

International Journal of Innovative Research and Practices Vol.2, Issue 10 (1), October 2014
ISSN 2321-2926

Harika Pratibha Kovvuri and Chinabusi Koppula 22

14. A. Rowstron and P. Druschel, “Pastry:

Scalable, Distributed Object Location and

Routing for Large-Scale Peer-to-Peer

Systems,” Proc.IFIP/ACM Int’l Conf.

Distributed Systems Platforms Heidelberg, pp.

161-172, Nov. 2001.

15. M. Jelasity, A. Montresor, and O. Babaoglu,

“Gossip-Based Aggregation in Large Dynamic

Networks,” ACM Trans. Computer Systems,

vol. 23, no. 3, pp. 219-252, Aug. 2005.

16. P. Ganesan, M. Bawa, and H. Garcia-Molina,

“Online Balancing of Range-Partitioned Data

with Applications to Peer-to-Peer Systems,”

17. M.R. Garey and D.S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Co., 1979.

18. D. Karger and M. Ruhl, “Simple Efficient

Load Balancing Algorithms for Peer-to-Peer

Systems,” Proc. 16th ACM Symp.Parallel

Algorithms and Architectures (SPAA ’04), pp.

36-43, June2004.

19. D. Eastlake and P. Jones, “US Secure Hash

Algorithm 1 (SHA1),” RFC 3174, Sept. 2001.

20. S. Surana, B. Godfrey, K.

Lakshminarayanan, R. Karp and I. Stoica,

“Load Balancing in Dynamic Structured

P2P Systems,” Performance Evaluation, vol.

63, no. 6, pp. 217-240, Mar. 2006.

21. S. Iyer, A. Rowstron, and P. Druschel,

“Squirrel: A Decentralized Peer-to-Peer

Web Cache,” Proc. 21st Ann. Symp.

Principles of Distributed Computing (PODC

’02), pp. 213-222, July 2002.

BIOGRAPHIES

Harika Pratibha Kovvuri

pursuing her M.Tech in

Computer Science and

Engineering at Kaushik

College of Engineering,

Visakhapatnam. Her

research interest includes

Cloud Computing and distributed computing.

Chinabusi Koppula He is

currently working as

Assistant professor in

the Department of

C.S.E, Kaushik college

of Engineering,

Visakhapatnam.

Andhra Pradesh, India. His pursued his B.Tech

from JNTUK and M.Tech from G.I.E.T.

Rajahmundry His research areas of interest include

Cloud Computing, Distributed computing, compiler

design & Network security. He is associated with

assisting of various academic projects among

various fields with 5 years of teaching experience

and 2 years of industrial experience. To his credit 7

international publications, 2 national publications

and 4 workshops .Now he is guiding 5 U.G level

and 2 P.G level projects

