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1. Introduction  

The term Allee effect seems to have originated 
from the works of Allee [3, 4]. Allee effect refers to 
reduction in individual fitness at low population 
density that can lead to extinction [6, 11, 12]. It is 
strongly related to the extinction vulnerability of 
populations. According to [28], any ecological 
mechanism that can lead to a positive relationship 
between a component of individual fitness and 
either the number or density of conspecifics can be 
termed a mechanism of the Allee effect [19, 31] or 
depensation [10, 15, 21] or negative competition 
effect [37]. 

Most ecosystems experience fluctuations in 
environmental factors which affect the birth rates, 
mortality rates, carrying capacities and other vital 
factors of the species in the ecosystems. In spite of 
the influence of such environmental fluctuations on 
species dynamics, the amount of analysis which has 
been carried out on autonomous growth models is 
much more than that which has been done on 
models in which the parameters are allowed to vary 
with time. In recent years an increasing amount of 
attention has been paid in both the biological and 
mathematical literature to the effects that such 
variations have on growth of species. It is evident 
that many of the variations 

with which the species must cope are regular and 
periodic. The quality and quantity of food and other 
vital resources, the occurrence of predation and 
competition, and the susceptibility or exposure to 
diseases or other hazards are but a few other 

examples of things which can affect growth and 
dynamics of species which can vary regularly [13, 
27]. 

2. The Model 

Let us consider the following differential equation 
representing the dynamics of a population subjected 
to additive Allee effects. 

(1)   

where the positive constants r and k stand for 
intrinsic growth rate and carrying capacity of the 
resource, ν and ω are constants that indicate the 
severity of Allee effect that has been modelled [1, 
2]. Considering these parameters to be positive 
constants (which is a realistic assumption), it can be 
easily observed that (1) always admits the trivial 
solution as one of the equilibrium solutions and it 
admits at most two positive equilibrium solutions 
depending on the values of the remaining 
parameters. Equilibrium analysis and qualitative 
behaviour of solutions of (1) is presented in [34]. 
Assuming that the parameters r,k,ν,ω to be 
constants imply that the growth rate, carrying 
capacity, the extra mortality due to other factors 
remain the same throughout and are independent of 
the seasons. We introduce periodic variations in the 
growth dynamics by assuming that these 
parameters are periodic of same period [8, 13, 30]. 

In this article we are interested in studying the 
existence of positive periodic solutions of (1) under 
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the assumption that the associated coefficients 
and ω are positive periodic functions of same 
period, P. Thus we consider the equation

 (2)

 

The following lemma transforms the 
differential equation (2) into another equivalent 
simpler (involving only two periodic coefficients 
instead of three) T periodic differential equation 
where T could be different from P. 

Lemma 1. The transformation 

 transforms (2) to a T

- periodic equation given by 

 (3) 

with y(t) = x(G−1(t)) where κ(t) = k(G
ν(G−1(t)) and m(t) = ω(G−1(t)) are positive periodic 
functions of period T = G(P). Also, for each T 
periodic solution y(t) of (3), x(τ) = x(G
a P - periodic solution of (2). 

In the light of lemma 1, we shall concentrate 
only on the existence of T periodic solutions for (3).

3. Periodic solutions for a general scalar 
differential equation 

In this section we shall study the existence of 
positive periodic solutions for a general scalar 
differential equation for which (3) becomes a 
special case. The results developed in this section 
will be applied to (3) to find conditions under 
which existence of two positive periodic solutions 
are guaranteed. 

Let us consider the following general scalar 
differential equation 

(4) dy  = y + f(t,y) dt 

where f, defined on R ×R, is a non positive valued 
continuous function and satisfies f(t + 
We have the following lemma which is easily 
verifiable. 

Lemma 2. If y(t) is a T - periodic solution of (4) 
then it also satisfies the integral equation
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Let us consider the following general scalar 

, is a non positive valued 
+ T,y) = f(t,y). 

which is easily 

periodic solution of (4) 
then it also satisfies the integral equation 

(5) t+T y(t) = ∫G(t,s)f(s,y(s))dst 

where G(t,s) is the Green’s function given by

Note that the Green’s function G(t,s

(6)

The following fundamentals are needed to prove 
the results to follow. Let X be a Banach space and 
K be a cone in X. A mapping ψ : K 
to be concave nonnegative continuous functional 
[20] on K if it is continuous, nonnegative and 
satisfies 

ψ(ηx + (1 − η)y) ≥ ηψ(x) + (1 
η)ψ(y),x,y ∈ K,η ∈ [0,1]. 

Let a,b,c > 0 be constants with K and 
above. Define 

Ka = {y ∈ K : ||y|| < a} 

and 

K(ψ,b,c) = {y ∈ K : ||y|| < c, ψ(y) > b

Corollary 1. Suppose that there exist two positive 
constants c1 < c2 such that 

 at y = c2 

and 

 

. 

Then (4) admits at least two positive T
solutions. 

Theorem 3. Assume that 

T 
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if it is continuous, nonnegative and 
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and X as defined 

> b}. 

Suppose that there exist two positive 

 for 

Then (4) admits at least two positive T-periodic 



International Journal of Innovative Research and Practices        

 is strictly 
monotonically increasing such that 

 there exists a constant c > 

in a small 

left neighborhood of c. 

Then (4) admits at least two positive T
solutions. 

Proof. We shall show that the validity of conditions 

and  imply validity of H˜
1 

Corollary 1. Given that 
strictly 

monotonically increasing with respect to 
this monotonicity property holds for 

 also. If (a,c) represents a left 

neighborhood in which  is valid then by 
choosing c1 to be any element of (a,c

is satisfied. From  and in view 

of we have 
and there exists a c2 > c 

 for all y 
implies validity of H˜1. Hence, 

by Corollary 1, (4) admits at least two positive 
periodic solutions.  

The Theorem 2, Corollary 1 and Theorem 3 
involve conditions on integral of the function 
Below we present two existence theorems which 
are based on bounds of the function f(t,y
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The Theorem 2, Corollary 1 and Theorem 3 
involve conditions on integral of the function f(t,y). 

two existence theorems which 
t,y). 

Theorem 4. Suppose that there exists two positive 
constant c1 < c2 such 

 when  

. 

Then (4) admits at least two positive T
solutions. 

Corollary 2. Suppose that there exists two positive 
constant c1 < c2 such 

 at y = c2 and 

 for  

Then (4) admits at least two positive T
solutions. 

Theorem 5. Assume that 

monotonically increasing function such 
that 

 there exists a c > 

small left neighborhood of c.

Then (4) admits at least two positive T
solutions. 

Proofs of Theorem 4, Corollary 2 and 
Theorem 5 are parallel to that of Theorem 2, 
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Corollary 1 and Theorem 3 respectively. Hence the 
proofs are omitted. 

4. Application to renewable resource dynamics 
involving additive Allee effects  

In this section, we shall apply the results 
developed in the previous section to find the 
existence of two positive periodic solutions of (3). 
Let us consider the following form of (3). 

 (12) . 

In view of (4) we have 

 (13)  

where the coefficients η(t) and m(t) are positive T-
periodic continuous functions. We have 

. 

Clearly of Theorem 3 is satisfied by (3). We 
have the following theorem. 

Lemma 3. If there exists a l ≥ 0 such that 

 (14)

  

then there is a c > l that satisfies . Further, (3) 
admits at least two positive T-periodic solutions. 

Proof. Let us consider the equation 

 (15)
 

 

Simplifying (15) we obtain 

(16)

 . 

Let us denote 

 and 

 

defined on positive y axis. Observe that z(y) is 
continuous and strictly increasing function, r(y) is a 
convex function and it approaches zero as y 
approaches ∞. On the other hand s(y) is a linear 
decreasing function inter- 

secting the y axis at (1 . Let us 
assume that there exists l ≥ 0 such that

. In view of 
the qualitative behaviour of the functions r(y) and 

s(y), there exists a  
such 

that r(c) = s(c). Since z(y) < z(c) for y < c we have 

  

 = c(1 − e−T ) (since r(c) = s(c)). 

Since  is 
strictly monotonically increasing con- 

tinuous function we obtain 

. 

The above inequality can be rewritten as 
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Therefore  of Theorem 3 is satisfied. 
Hence, from Theorem 3, (3) admits at least 
two positive T−periodic solutions.  

Now we shall apply Theorem 5 to 
investigate the existence of positive 
periodic solutions for (3). Since the 
coefficient functions m(t),η(t) and κ(t) are 
assumed to be positive periodic functions, 
there exists positive constants a,b,d,f,g 
h satisfying 

(18) a ≤ η(t) ≤ b,d ≤ m(t) ≤ f 
≤ h. 

In view of (18) we have 

(19) 
. 

Therefore we have 

. 

Therefore of Theorem 5 is satisfied. 
We have the following Lemma, proof of 
which can be constructed parallel to that of 
Lemma 3. Lemma 4. If there exists l′ 

such that 

 (20)  

then there is a c > l′ that satisfies . Further, (3) 
admits at least two positive T−periodic solutions.

5. Discussion and Conclusions  

Allee effects occur when ever fitness of an 
individual in a small or sparse population decreases 
as the population size or density also declines [6, 
11, 12, 31]. The additive Allee effect that is known 
to occur when a prey dynamics is influenced by 
predator satiation [7, 34], group defence in a prey 
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periodic solutions. 

Allee effects occur when ever fitness of an 
individual in a small or sparse population decreases 
as the population size or density also declines [6, 

Allee effect that is known 
to occur when a prey dynamics is influenced by 
predator satiation [7, 34], group defence in a prey 

species, inhibition in micro organisms [1, 2] or 
difficulty in searching for a mate [34]. In all the 
works that concerned the additive Allee effects, the 
involved parameters have been taken to be 
constants implying that the dynamics are time 
independent or the environment is constant in time. 
But in natural world a biological organism’s 
physical environment is non constant in time. 
the environment is either periodic or almost 
periodic. Periodicity in the environment is 
incorporated into the dynamics of a species by 
assuming that the involved coefficients in the 
equation governing its dynamics to be periodic [8, 
13, 30]. In this article we have considered dynamics 
of a renewable resource that is subjected to additive 
Allee effect in a periodically varying environment. 
We have observed that, under reasonable conditions 
on the coefficient functions, there are at least two 
positive periodic solutions for the considered 
model. 

The existence of at least two positive periodic 
solutions is obtained by employing 
Williams Multiple fixed point theorem 
considered model. The existence is established 
using two different conditions. The first type 
involves integral conditions while the other 
involves bounds of the periodic coefficients. The 
existence results are illustrated through numerical 
simulation in section 5 using a suitable example. 
The theoretical results developed in this article 
provide an upper bound on the number of positive 
periodic solutions admitted by the considered 
model. It would be more interesting to obtain 
results that decide the exact number of periodic 
solutions along with their stability nature. Wor
this direction is in progress. 
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