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1. Introduction 

In this paper we analyze some Gause type predator-
prey models, considering three different prey 
dependent functional responses and Allee effect on 
prey growth equation. We describe the 
consequences of this phenomenon on the behavior 
of the models, establishing the number of limit 
cycles that the system can exhibit; we think this 
number is a good criterion for the classification of 
models. 

The determination of the global bifurcations in 
these models is critical for understanding their 
dynamics. Particularly, in the absence of Allee 
effect, necessary and sufficient conditions for the 
existence and uniqueness of a limit cycle have been 
established using the same type of functional 
responses [40,56]. 

If the Allee effect is considered, we show the 
impossibility to establish general properties with 
respect to the uniqueness or multiplicity of limit 
cycles for these systems; then, the problem of 
determining conditions guaranteing the uniqueness 
or multiplicity of limit cycles surrounding a 
positive equilibrium remains open [15]. 

Gause type models considering Allee effect on the 
prey growth equation are sensitive to the 
mathematical form used for the predator functional 
response. Also, different dynamical behaviors can 

exist, such as: stable coexistence of both species, 
persistent oscillations, predator extinction or 
extinction of both species [7]. 

This paper is organized as follows: In the 
subsequent subsection, the problem of determining 
the number of limit cycles surrounding a positive 
equilibrium point in predation models is described; 
later, a brief description of the Allee effect and the 
types of functional response is given. The main 
properties of models in the absence of the Allee 
effect are also presented. 

In Section 2, models topologically equivalent to the 
Gause type predator-prey model are obtained; in 
Section 3, the main properties of these models are 
proved. Finally, some ecological consequences of 
the mathematical results and a table summarizing 
the number of limit cycles of the models studied are 
given in Section 4. 

1.1. Continuous-time Gause type predator-
prey models 

The models here studied were named after the 
Russian biologist, Georgii Frantsevich Gause (b. 
1910, d. 1986), who in 1932 proposed the 
competitive exclusion principle, based on 
experimental work done with mixed cultures of 
yeast species and Paramecium cultures [28]. This 
work culminated in 1934 in the important 
publication entitled The Struggle for Existence [26]. 
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A lot of work has been done on the existence and 
uniqueness of limit cycles in a predator-prey 
interaction modeled by bidimensional autonomous 
differential equations systems. One well-known 
version of such systems, the so-called Gause type 
models [22], has the following general form: 

  (0) 

where x(t) and y (t) indicate the prey and predator 
population sizes at time t >0, respectively, and c >0 
is the natural per capita death rate of predators. The 
functions f (x) = x g(x), h(x) and ψ (x) have 
appropriate properties [48,77] representing the prey 
growth rate, the functional response or trophic 
function of the predator [40] and the numerical 
response, respectively. 

Global analysis of model (0) has been studied in 
several articles by considering the case where ψ(x) 
= ph(x), with p >0 being the conversion efficiency 
rate of prey to predators, that is, the system satisfies 
the conversion rule [36]. For ψ(x) =6 h(x), there are 
little known results on the existence and uniqueness 
of limit cycles of (0) for some rather general 
families of predator responses [26]. They can be 
used to explain many real world oscillatory 
phenomena in nature [20,27], such as snowshoe 
hares and lynx in northern Canada, house sparrows 
and sparrow hawks in Europe, muskrats and mink 
in central North America, bighorn sheep and 
wolves in Alaska [43]. 

The problem of determining conditions, which 
guarantee the uniqueness of a limit cycle or the 
global stability of the unique positive equilibrium in 
predator-prey systems, has been extensively studied 
over the last three decades [10], starting with the 
work by Cheng [10], who first proved the 
uniqueness of a limit cycle for a specific predator-
prey model with a Holling type-II functional 
response, using the symmetry of the prey isocline 
[7]. 

Although it is possible to build models with many 
limit cycles [43, 77], we will only analyze those 
presented in the ecological literature, primarily 
because we are motivated by C. S. Coleman [15], 
who suggested: “Find a predator prey or other 
interacting system in nature, or construct one in the 
laboratory, with at least two ecologically stable 
cycles”. Mathematically, a system representing this 
situation must have at least, three limit cycles. In 
this context, ecologically stable means a natural 

cycle persevering over a long period of time which 
must be somewhat insensitive to the inevitable 
shocks and disturbances of the real world [15]. 

The latter is related to the unsolved problem 
proposed by David Hilbert in 1900 (Hilbert’s 16th 
Problem), and refers to finding the maximum 
number of limit cycles of a bidimensional 
polynomial differential equation system, which 
degree must be equal to p ∈N [24]. 

1.2. Models for the Allee effect 

Different equations have been suggested for the 
prey growth rate for single species, which have 
been classified as compensatory or depensatory 
equations [13]. The most common among the first, 
is the well-known logistic model, but other 
compensatory equations have been used in the 
ecological literature [5] as the Gompertz [53] or 
Pella-Tomlinson equation [13]. In the book by C. 
W. Clark, it is said that compensatory equation has 
a behavior similar to the logistic growth equation. 

Depensatory equations are used to model the Allee 
effect in situations occurring at low population 
densities, where the per-individual growth rate is an 
increasing function of population abundance [35]. 
This effect is named after Warder Clyde Allee, an 
American zoologist and ecologist (b.1885 d.1955) 
[19], who was the first to study this phenomenon. 

The Allee effect is defined as: a positive 
relationship between a component of individual 
fitness and the number or density of conspecifics 
[36]. Thus, any mechanism affecting some 
measurable component of individual fitness should 
be included within the definition of Allee effects 
[25]. 

This phenomenon has received different names, 
such as: depensation in Fisheries Sciences, or 
negative competition effect, inverse density 
dependence or positive density dependence in 
Population Dynamics [31]. Populations can exhibit 
Allee effect due to a wide range of biological 
phenomena, such as reduced antipredator vigilance, 
social thermoregulation, genetic drift, mating 
difficulty, and deficient feeding at low densities; 
however, several other causes may lead to this 
phenomenon (see Table 1 in [6] or Table 2.1 in 
[19]). 
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The dynamic consequences of the Allee effect have 
been studied within different biologica
such as metapopulation dynamics [46], biological 
invasions [73], infectious diseases [42], or driven 
by predation [25], etc. 

Recent ecological research suggests that two or 
more Allee effects can lead to mechanisms 
simultaneously acting on a single population (see 
Table 2 in [6]); the combined influence of some of 
these phenomena is known as multiple (double) 
Allee effect [2,6]. 

The Allee effect can be divided into two main types 
called strong Allee effect [27,33] or 
depensation [13,14,31] and weak Allee effect 
[36,27] or noncritical depensation [13,14,31]

The most common mathematical form for the Allee 
effect [5,37] is described by the non
differential equation 

  

where −K ≤ m < K. since the Allee effect is a 

phenomenon that occurs at low population sizes. 

The parameter m >0, is called the minimum viable 

population size; r,K >0 are the potential biotic [12] 

or intrinsic rate of population growth [13,20] and 

the environmental carrying capacity, respectively.

Equation (1) can be obtained by assuming a 
density-dependent per capita mortality rate 
(analogously to logistic growth) and a quadra
capita fertility rate [22]. This equation expresses a 
weak Allee effect when m ≤ 0, but h
consider only the collapse of the singularities 
0 and m >0. 

The marked differences between standard logistic 
growth and population growth incorporating Allee 
effects are illustrated below in Figure 1, for diverse 
values of m in equation (1). In the vertical axis, we 
have plotted the per capita growth of species as a 
function of population size, comparing the negative 
density dependence (associated to logistic growth 
rate, represented by the unbroken line) with the 
population growth incorporating Allee effects. The 
dotted line shows growth with this phenomenon 
that evidently produces a positive slope over a large 
range of population sizes. The strong Allee effect 
implies the existence of a threshold population level 
m [5,9,17], below which the population becomes 
extinct. This requires the population growth 
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= x(t) indicates the population size. 

Figure 1. Relationships between the per 
capita population growth rate f(x) = 
andthe population size x (density, biomass 
or number) are shown, for negative 
density dependence (straight line), strong, 
weak and special weak Allee effects (
>0,m <0,m = 0), are shown for equation 
(1). A weak Allee effect occurs if the per 
capita population growth rate increases 
with increasing population size and the per 
capita population growth rate is positive 
for low population sizes. For m <
compensatory curve growth is obtained 
and the per capita population growth rate 
f(x) is negative for all x >0; this case is not 
an Allee effect. 

Many continuous time equations have been used to 
model the Allee effect [8, 17, 25, 38], but it is 
possible to prove the topologic
between these different mathematical expressions 
modelling this phenomenon [31]. This implies the 
differential equations have the same unidimensional 
dynamical properties, i.e., solutions have the same 
qualitative behavior for x ≥ 0. 

Nevertheless, when forms distinct to equation (1) 
are incorporated on predator-prey models, it can 
produce a change in the number of limit cycles 
surrounding a positive equilibrium point and 
generated by Hopf bifurcation [21,33,3
consider that this issue is a good criterion to 
classify these models. 

1.3. The functional response 

Function h(x) in equation (0), named the 
response of predators or consumption rate function, 
the rate at which an individual predator kills prey 
[30], refers to the change in the density of prey 
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consumed per unit time per predator as the prey 
population size changes. 

As prey population size increases, the response of 
the predator h(x) may change in various ways 
(linearity, at a decelerating rate, sigmoidally or 
initially increasing to a maximum rate and then 
decrease and saturate at a minimum rate). The 
ecological literature suggest three basic types of 
functional response, which involve: 

i) The Holling type I functional response is a 
piecewise-continuous function, also called 
Blackman’sequation [32], which is a monotonically 
increasing function that tends towards and reaches 
c >0 as the prey size increases [62]. It generally 
suggests that only filter feeders satisfy the handling 
and satiation conditions that lead to this type of 
function [32]. 
However, the linear form is most commonly used, 
as in the well-known Lotka-Volterra model [53], 
being similar to the harvest function h(x) = qxE, 
established by the Schaeffer´s Hypothesis in 
Fisheries Sciences [13]. 

ii) The Holling type II, concave downward 
and approaching a horizontal positive asymptote 
[22], iswidely used in the ecological literature, 
particularly, the form known as the hyperbolic 
functional response [30]. However, considering a 
monotonic non-differentiable functional response, 
the behavior of predatorprey model strongly differs 
from those assuming the hyperbolic functional 
response [22]. 

iii) The Holling type III or S-shaped [22], 
biologically explains the fact that at small densities 
of preypopulations, the effect of predation is low 
[12]; but, if the population size increases, then the 
predation is more intensive. This phenomenon 
appears in real world interactions [19] and the 
predator is said to be generalist [14], since if the 
prey population size is low, then it will seek other 
food alternatives [29]. 

In this work, the following rational 
functional responses will be 
considered for system (0): i) linear 
response h(x) = qx, where q is the per 
capita attack rate of predators, 

ii) hyperbolic response , where q 
is the maximum killing rate and a is the half-
saturation [30,54] or Michaelis-Menten constant 
[39], i.e., prey population size at which the killing 
rate is half of the maximum [70], 

iii) sigmoid response , where q 
is the maximal relative biomass growth rate of the 
predator [40] and a is the half-saturation constant 
for the predator [68] or the prey abundance where 
predator satiation begins [64]. 

We note that 

a) the measure unit of parameter q in the linear 
functional response is [t−1], whereas in hyperbolic 
andsigmoid functional responses it is [prey measure 
unit] × [t−1], 

b} in this Holling type II and III functional 
response, the measure unit of a is the same that x. 

 
Moreover, in the hyperbolic and sigmoid functional 

responses, the parameter a measures the abruptness 

of the functional response [27]. If a → 0, the curve 

grows quickly; if a → K, the curve increases 

slowler, i.e. a larger quantity of prey is necessary to 

attain , which can also occurs when a ≥ K. So, in 

the following, we assume a < K. 

Many other mathematical formualtions can be 
proposed for each basic type of fucntional response 
such as the Rosenzweig functional response 
described by h(x) = qxα [53,59], which is non-
differentiable at x = 0 or the Ivlev functional 
response [53], a trascendent function given by h(x) 
= q(1 − e−ax), in which the consumption rate 
increases at a decreasing rate with prey density 
until it becomes constant at satiation [16], i.e. it is 
also monotonically increasing and asymptotics to a 
fixed value. 

Also, different types of functional response such as 
the Holling type IV [9], ratio-dependent [7,13], 
Beddington-DeAngelis [14], or Hassel-Varley [15] 
have been included on the formulation of 
predatorprey models However, some of these forms 
can produce strong changes in the dynamics of the 
model [7,14,15], and particularly, in the quantity of 
limit cycles surrounding a positive equilibrium 
point in predator-prey models [1,21]. 

1.4. Models with logistic prey growth 

Properties of system (0) considering the logistic 
growth function for the prey and increasing 
functional responses, are well-known. The 
equilibrium points (0,0), (K,0) always exist. The 
point (xe,ye) lies in the first quadrant for certain 



International Journal of Innovative Research and Practices                                 Vol.12, Issue 3, MAR 2024 
ISSN   2321-2926 

G.KIRAN KUMAR  31 

constraints on the parameter space and in this case 
(0,0) and (K,0) are hyperbolic saddle points. 

In the Lotka-Volterra model [53], the global 

stability the positive equilibrium point  is 
established by means of the following Lyapunov 
function proposed by Goh [29] 

 
In the Rosenzweig-MacArthur (considering the 
hyperbolic functional response) and in the Yodzis 
model [70] (incorporating the sigmoid functional 
response), when the point (xe,ye) lies in the first 
quadrant, it can be an attractor or a repellor 
surrounded by a unique limit cycle [19,17] 

For the Rosenzweig-MacArthur and Yodzis models 
[20], local stability of (xe,ye) implies global 
asymptotically stability of this point. Moreover, in 
[31,36] it is shown that the existence of a limit 
cycle is equivalent to the unstability of the unique 
positive equilibrium point of the model. There 
assuming the logistic growth function for the prey 
and a general functional response in which the 
consumption rate increases at a decreasing rate with 
prey population size until it becomes constant at 
satiation (as the Holling Type II and III functional 
response) [36]. Table 1 summarizes the nature of 
the equilibrium points on the Rosenzweig-
MacArthur model. 

Table 1. Equilibrium points and their nature in the 
Rosenzweig-MacArthur model, where c >0 is the 
natural per capita death rate of predators, p >0 is 
the conversion efficiency rate of prey to predators 
and K >0 environmental carrying capacity. 

Moreover, in [41] a sufficient and necessary 
condition for the existence of limit cycles is given, 
when the derivative of the functional response is 
positive, decreasing, and concave upward. 

However, these assertions are not true in general. 
Choosing a monotonically increasing but 
nondifferentiable functional response for x = 0, it is 
possible to demonstrate the existence of a separatrix 
curve dividing the phase plane and two limit cycles 
surrounding a unique positive equilibrium point 
[72]. 

2. The Models 

Now, we focus on the dynamics of Gause-type 
predator-prey model, considering the Allee effect 
on prey modeled by equation (1) and some of the 
functional responses outlined above. This models 
are described by the following autonomous 
Kolmogorov type bidimensional differential 
equation system [22,29]: 

 

 (2) 
where x = x(t) and y = y(t) indicate the prey and 
predator population size, respectively, with t >0 
(measured as the number of individuals, density or 
biomass), and h(x) is the functional response. 

In system (2), all parameters are positive and by 
ecological reason a < K and m < K, i.e., µ = 
(r,K,q,c,p,a,m) ∈R5

+ × [0,K[2. System (2) is defined 
in the first quadrant: 

. 

The equilibrium points of system (2), or 
singularities of the vector field Xµ, are O = (0,0), PK 

= (K,0), Pm = (m,0) and Pe = (xe,ye), which are 
unique when using the linear functional response, 
the Holling type II and III functional response. 
Assuming a non-monotonic functional response in 
system (2), one, two or none positive equilibrium 
points can exist [38]. 

 

2.1. Topologically equivalent systems 

In order to simplify the calculations, we make a 

change of variables and a time rescaling given by 

the function ϕ : Ω˜ ×R−→ Ω ×R with and 

 

where L = rK [34] or rK2 [35], and 

[35,36], according to the functional response 
employed. Thus, detDϕ(u,v,τ) >0; in particular, for 
the model considering sigmoid functional response, 
we have that 
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. 

Then, ϕ is a diffeomorphism [11] preserving the 

time orientation; hence, we obtain a qualitatively 

(topologically) equivalent vector field 

which has the form Yν = P(u,v)∂u
∂ + Q

The associated polynomial differential equation 

systems are also of Kolmogorov type [22] and we 

have: 

i) For the linear functional response 

 

 

 (4) 

where η = (A,B,C,M) ∈]0,1] ×R2
+ × [0

 and , and 
p − c >0. 

iii) For the sigmoid functional response

 

 (5) 

where η = (A,B,C,M) ∈]0,1[×R2
+ × [0

0, and . 

3. Main Results 

For the systems of differential equations (3), (4) 
and (5) we have 

Lemma 3.1. Existence of an invariant region

 The set Γ˜ = {(u,v) ∈Ω/˜ 0 ≤ 
0} is an invariant region. 

Proof. In system (3), if u = 0, then 

 0 and the trajectories remain over 

the = 0, then dτ
dv 

0 if u > M. 

If
1, then  C ) v, which can be positive or negative, 
but trajectories point towards the interior of 
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For the systems of differential equations (3), (4) 

Existence of an invariant region 

≤ u ≤ 1, v ≥ 

= 0 and

0 and the trajectories remain over 

dv = 0 and 

 = 
, which can be positive or negative, 

but trajectories point towards the interior of Γ˜. 

 For the other systems, the proof is similar.
  

In order to prove the boundedness of solutions, the 
Poincar´e compactification [11] is used to study the 
behavior of point (0,∞). Through the change of 

variables  and Y = v
1, we have that

 and 
simplifications, a new system Z˘ is obtained, where 
the 
nature of the point (0,0) of Z˘ determines the nature 
of (0,∞). 

Using the blowing up method [11,20], it is shown 
that (0,0) is a non-hyperbolic saddle point and, as a 
consequence, the point (0,∞) is a saddle point.
  

The following results were obtained for system 
of differential equations (3), (4) and (5).

Lemma 3.3. Nature of equilibrium points on axes

2.1) The equilibrium point Q1 = (1

2.1.1) a hyperbolic attractor, if and only if, 
C >1. 

2.1.2) a hyperbolic saddle point, if and only 
if, 0 < M < C <1. 

2.1.3) a non-hyperbolic attractor, if and 
only if, C = 1. 

2.2) The point QM = (M,0) is 

2.2.1) a hyperbolic saddle point, if and only 
if, M < C. 

2.2.2) a hyperbolic repellor, if and only if, 
C < M. 

2.2.3) a non-hyperbolic repellor, if and 
only if, M = C. 

2.3) The equilibrium point O 
hyperbolic attractor for any set of parameter 
values 

Proof. The results are directly obtained from the 
evaluation of the Jacobian matrix. 

Remark 3.4. Let Ws (M,0) and W
stable and unstable manifold of the equilibrium 
point (M,0) and (1,0), respectively. Then, there 
exists a separatrix curve Σ in Γ¯ determined by 
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(M,0), which divides the behavior of the trajectories 
(Fig. 2a). 

Let u0 be such that 0 < M ≤ u0 ≤ 1 and the points 

(u0,v
s) ∈Ws (M,0) and (u0,v

u) ∈Wu (1,0) are in the 

intersection of the straight line u = u0, W

Wu (1,0), respectively. 

If vs > vu, an invariant subregion 
determined by the stable manifold W

(
straight line 
uΛ

 Λ = {(u,v) 1,0 

is a compact region and the Poincar´e
Theorem applies (see Figure 2(a)). 

Then, the main consequence of the strong Allee 
effect is a separatrix curve [4] appearing in the 
phase plane determined by the stable manifold 
(M,0) of the saddle point (M,0), which divides the 
region Γ˜ into two subregions, one of them denoted 
by Λ. 

Therefore, trajectories are highly sensitive to initial 
conditions. This implies that there is a high 
possibility that both populations go to extinction 
and in the situation described by Fig. 2b, depending 
on the ratio between population sizes, both 
populations could either reach extinction or long
term coexistence [33,34]. 

 (b) 

Figure 2. The trajectories with 
initial conditions in the dark zones 
have the point (0,0) as their 
limit, for E >1 or 0 < E < M. 
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As detD Yν (C , L) >0, the nature of the equilibrium 
point Qe is dependent on the sign of the trace of the 
Jacobian matrix evaluated at this point; 
either be an attractor or a repellor surrounded by at 
least one limit cycle (Poincar´e 
theorem), or else, it is a weak focus [11] in the 
subregion Λ. Whether Qe is a node or a focus 
depends on the quantity P = (trD Y
4detD Yν (C , L). 

In Figure 3, when (C , L) ∈Γ¯, the different 

positions of Ws (M,0) and Wu (1,0), the stable and 

unstable manifolds of QM and Q1, respectively, are 

shown. 

 (0,0) (M,0) u* 
(M,0) u* (1,0) u 

Figure 3. Different positions of 
the stable manifold Ws of saddle 
point (M,0) and the unstable 
manifold Wu of saddle point (1
when 0 < M < E <1, in systems 
(3)-(5). In left poster the stable 
manifold Ws of (M,0) is above the 
unstable manifold Wu of (1
meanwhile in the right poster the 
stable manifold Ws of (M,
below the unstable manifold 
of (1,0). By continuity of systems 
with respect to the parameter 
values, there exists a condition (a 
surface) in the parameter space 
for which both manifold
intersect. 
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Now, we consider M = 0 (i.e. m = 0), as having a 
special case of the weak Allee effect. We have that 
the point (M,0) coincides with (0,0), being now a 
nonhyperbolic equilibrium point with parabolic and 
hyperbolic sectors [60]. 

The existence of the separatrix curve is maintained, 
dividing the behavior of the trajectories on the 
phase plane as in the case of a strong Allee effect. 
Those orbits with initial conditions in the parabolic 
sector have the point (0,0) as their ω − limit. The 
orbits with initial conditions in the hyperbolic 
sector can have a different ω − limit, according to 
the parameter values. 

The equilibrium points of the system of 
differential equations (3) and (4) are: 

O = (0,0), Q1 = (1,0) and Qe = (C,L0), where 

As previously shown, system (5), with sigmoid 
functional response, can have three limit cycles, but 
when M = 0, this number diminishes. Now we have 
the system 

 
 (8) 

where λ = (A,B,C) ∈∆1 = ]0,1[ ×R+ ×R+. System 
(8) or vector field Yλ has three equilibrium 

points, (0,0), (1,0) and (C,L0), with L0 = (1 − C)( A 
+ C2) and it has exactly two limit cycles. 

Theorem 3.14. Number of limit 
cycles for M = 0. 

i) In system , then trD Yν (C , L) 

= 0 and the equilibrium point  is a weak focus 
of order one [11]. 

ii) In system  and 

, then the equilibrium point (C , L) is a 
weak focus of order one. 

iii) In system (5), if A = C (2 − 3C), then the 

equilibrium point (C , L) is at least a two-order 

weak focus. 

Proof. In system (5) the new equilibrium (C,L0) is a 
two order weak focus since the sign of η2 =

 changes at  (see Theorem 3.9) 

and ) with f1 (B) = 2097152
1 f2 (B) 

and f2 (B) = −16 × 45B <0, then η3 <0 (it does not 
change sign). 

 Then, when trDYλ (C,L0) <0, η2 >0 and η3 

<0, two limit cycles are obtained.  

The uniqueness of a stable limit cycle in system (3) 
for M = 0, was established calculating the 

Lyapunov quantities; then, the point  is a first 
order weak focus, which contradicts an affirmation 
in [17], where the existence of a center is claimed. 

For the knowledge of properties of system (6), 
the bifurcation diagram is shown in Figure 7. 

It is easy to see that if M <0, the separatrix curve 
determined by the strong Allee effect disappears; 
then, these systems have a behavior similar to those 
with a compensatory growth function of the prey. 
The parameter B determines mainly whether the 
positive equilibrium point is a node or focus. 

The straight line C = 0.25 in figure 7, divides the 
parameter space, since the quantity η2 changes sign, 
as is demonstrated in the proof of Theorem 3.10. 

 

Figure 7. Bifurcation diagram of 
system (6), for the special case of 
the weak Allee effect when M = 0 
and for any fixed value of B. Five 
subsets in the AC − plane of the 
parameter space exist, for A <1, 
in which the system exhibits 
different dynamics. We observe 
in region I of this plane, there are 
two limit cycles, determined by 
Hopf bifurcation, the outermost 
stable and the innermost unstable. 
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4. Conclusions 

In this paper, we have concentrated on the 
dynamics of Gause type predator-prey models 
considering three standard functional responses and 
the most common form to express the Allee effect 
on prey. Principally, we investigate the 
consequences of the Allee effect on the number of 
limit cycles compared to the same model without 
this effect and the results are presented in terms of 
the rescaled parameters. 

The most significant result of our analysis is that a 
unique positive equilibrium point of the system is 
either locally stable or lead to a stable limit cyc
there can also exist a range of parameters wherein 
multiple stable states occur. 

For Gause type models with strong Allee effect and 
the special case M = 0, the following common 
properties are obtained. 

1. The point (0,0) is an attractor for all 
parameters values. 

2. There exists a separatrix curve determined 
by the stable manifold of the saddle point (
the strong Allee effect. When M = 0, the point 
(M,0) coincides with (0,0); this point is non
hyperbolic and in this case, the separatrix curve is 
determined using the blowing-up method [11,20].

3. The trajectories close to the separatrix 

curve are highly sensitive to the initial condition. 

Those with initial condition below this curve, i. e., 

in region Λ, have as ω − limit either a limit cycle or 

the stable positive equilibrium point. Those with 

initial conditions above this curve have the origin 

(0,0) as their ω −limit. Also, the sensitivity of the 

bifurcation structure on the formulation of the Allee 

effect, is shown in [63] where a ratio

model is analyzed. 

Functional 
response h(x) → 

qx 
x+a 

 = r 1 x 

dt − K 

1 
[37]

 

1 
[35]

 

1 
[35]
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theoccurrence of a Hopf bifurcation whe
change of stability at the unique positive 
equilibrium point. 

6. The diameter of this limit cycle increases 
until it coincides with the heteroclinic curve joining 
theequilibrium points (M,0) and (1
heteroclinic breaks up and the singularity (0
globally asymptotically stable [33,34]. 
Some ecological interpretations of these properties 
are: 

Therefore, the strong Allee effect in the prey and 
the special case M = 0 for the weak Allee effect, 
have a great influence on the predato
interaction, due to the existence of the separatrix 
curve in the phase plane, giving rise to a large 
region of extinction of both populations.

On the other hand, comparing the results of 
theorems 6, 7 and 8, we can conclude that the 
inclusion of the Allee effect in a Gause type 
predator-prey model can have different 
consequences regarding the number of limit cycles 
compared to the respective model without this 
effect. 

Particularly, dynamics of system (4) are more 

complex than the Rosenzweig-MacArthur

(without Allee effect) [33,35], which has only four 

possible dynamics, included the case 

shown in Figure 8. 

Moreover, the Gause type predator
considering the most common equation for the 
Allee effect in the prey with: linea
response has one limit cycle, but it is well
that the Lotka-Volterra predator- prey model has no 
limit cycles [4,22,29], ii) hyperbolic functional 
response has one limit cycle as has the 
Rosenzweig-MacArthur predator prey model [20], 
iii) sigmoid functional response has two limit 
cycles and the number of limit cycles increases 
compared to the predator prey model without Allee 
effect [37]. 

− 

 
qx2 

x2+a 

[37] 
1 
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The diameter of this limit cycle increases 
until it coincides with the heteroclinic curve joining 

0) and (1,0); later, this 
ingularity (0,0) is 

globally asymptotically stable [33,34].  
Some ecological interpretations of these properties 
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Particularly, dynamics of system (4) are more 
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(without Allee effect) [33,35], which has only four 

possible dynamics, included the case A = 1 − 2C, as 

Moreover, the Gause type predator-prey model 
considering the most common equation for the 
Allee effect in the prey with: linear functional 
response has one limit cycle, but it is well-known 

prey model has no 
limit cycles [4,22,29], ii) hyperbolic functional 
response has one limit cycle as has the 

MacArthur predator prey model [20], 
) sigmoid functional response has two limit 

cycles and the number of limit cycles increases 
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As shown by the analysis, the existence of limit 
cycles is not equivalent to the unstability of the 
positive critical point, in general. In figure 6, we 
have illustrated the existence of two limit cycles for 
the Gause type model with a sigmoid functional 
response and Allee effect on prey. The results of 
this 

 

Figure 8. Bifurcation diagram of the 

Rosenzweig-MacArthur model, for B fix. 

Four subsets in the AC − plane of the 

parameter space exist, for A <1, in which 

different dynamics exist. 

There are many real ecosystems that possess 
multiple stable states, and studying mathematical 
models that exhibit this behavior can lead to 
insights about threshold and breakpoint behavior. 
This means that the system is potentially capable of 
modeling population explosions (outbreaks) and 
crashes as well as stable predator-prey relationships 
[16,26]. 

We estimate that to obtain general properties for 
these models, in particular, the determination of 
conditions that guarantee the existence and 
uniqueness or multiplicity of limit cycles 
surrounding a positive equilibrium, is an interesting 
but challenging open problem [27]. 

As by changing the expression of one interaction 
term may have a significant effect on the stability 
of system and persistence of the population models 
[19], then in future works we will change the 
mathematical form to model the Allee effect (for 
instance, assuming the form employed in [11]), but 

preserving the three functional responses used here. 
We hope that the number of limit cycles 
surrounding a unique equilibrium point will 
undergo changes, such as those occurring in the 
Leslie-Gower type models [1,33]. 
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