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Wilson Manufacturing produces both 

baseballs and softballs, which it wholesales 

to vendors around the country. Its facilities 

permit the manufacture of a maximum of 500 

dozen baseballs and a maximum of 500 dozen 

softballs each day. The cowhide covers for 

each ball are cut from the same processed 

cowhide sheets. Each dozen baseballs require 

five square feet of cowhide (including waste), 

whereas, one dozen softballs require six 

square feet of cowhide (including waste). 

Wilson has 3600 square feet of cowhide 

sheets available each day. 

Production of baseballs and softballs 

includes making the inside core, cutting and 

sewing the cover, and packaging. It takes 

about one minute to manufacture a dozen 

baseballs and two minutes to manufacture 

dozen softballs. A total of 960 minutes is 

available for production daily. 

1.   Formulate a set of linear constraints 

that characterize the production process at 

Wilson Manufacturing. 

Decision Variables 

X1= number of dozen baseballs produced 

daily 

X2= number of dozen softballs produced 

daily 

Constraints 

In addition to non-negativity constraints 

(i.e., the implied constraints) for the decision 

variables, there are three functional 

constraints. 

1.   The use of cowhide. 

2.   The daily limit for production time. 

3.   The maximum production limit of total 

units. 

Cowhide 

The total amount of cowhide used daily 

cannot exceed the amount of cowhide 

available daily 5X1 + 6X2 ≤ 3600 

Production Time 

The amount of production minutes used 

daily cannot exceed the total number of 

production minutes available daily X1+ 2 X2 

≤ 960 

Production Limit 

The total number of dozen units produced 

daily cannot exceed the marketing limits 

X1 ≤ 500 

X2 ≤ 500 

Non-negativity of Decision Variables 

Negative Production of baseballs and 

softballs is impossible. Thus, X1, X2 ≥ 0 

The Mathematical Model 

Max   7 X1+ 10 X2 (Objective Function)  

Subject to: 

5 X1 + 6 X2 ≤ 3600 (Cowhide) 

X1 + 2 X2 ≤ 960     (Production time) 

X1 ≤ 500               (Production limit of 

baseballs)  

X2 ≤ 500                (Production limit of 

softballs)  

X1, X2 ≥ 0            (Non-negativity) 
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Detailed Step By Step Description of the 

Problem and 

The Graphical Solution Algorithm 

Problem Description: The first step in 

understanding Wilson manufacturing 

production choices is to have a firm 

understanding of present limitations.  After 

an understanding of the limitations is set, one 

must understand how these limitations affect 

what one is trying to optimize.  A row and 

column chart works nicely; in this case an 

understanding of the material and production 

time, necessary for producing baseballs and 

softballs.  After the limitations are 

understood and the material and production 

time of each product is understood, one can 

then write a linear equation that embodies 

these limitations. 

A variable such as X1 will represent a 

baseball production; variable X2 will 

represent softball production.  By looking at 

the chart containing the parameters of the 

problem, one can determine that five square 

feet of cowhide is needed per dozen of 

baseballs.  Therefore 5 X1 represents the 

cowhide needed per dozen of baseballs 

produced.  The same process can be applied 

to softballs by stating 6 X2, representing 6 

square feet needed per dozen softballs 

produced.  The cowhide available is 360 

square feet therefore total baseball and 

softball production must be less than and or 

equal to 360 square feet, the linear inequality 

5 X1 + 6 X2 ≤ 360 places all of these 

conditions into a simple mathematical 

problem. 

Next we turn our attention to time (labor) 

constraints.  By looking at the chart 

containing the parameters of the problem, we 

see that it takes 1 minute of production time 

per dozen baseballs and 2 minutes of 

production time per dozen softballs.  The 

total time available per day is 960 minutes; 

therefore total production time of softballs 

and baseballs must be less than or equal to 

960.  This will read as a linear equation, 1 

X1+ 2 X2 ≤ 960. 

The next constraints to be considered are 

the ability of the machinery to produce 

baseballs and softballs.  The baseball 

machine has a limit of producing 500 

baseballs per day.  The softball machine also 

has a limit of producing 500 softballs per 

day.  The linear equation that embodies these 

constraints is X1 (baseballs) must be less than 

or equal to 500.  X2 (softballs) must be less 

than or equal to 500.  The final constraint is 

the non- negative constraint, which is critical 

in understanding production.  One cannot 

make negative product therefore X1 and X2 

must be greater than 0. 

After a keen understanding of the 

constraints and how each constraint applies 

to the manufacturing problem, ones attention 

must be turned toward the goal, in this case it 

is a maximization net profit.  We want to 

maximize the profit from producing baseballs 

and softballs.  We can see that the net profit 

on baseballs is 7 dollars per dozen and the 

net profit on softballs is 10 dollars per dozen.  

We attach these profit numbers to the 

variables that represent baseballs and 

softballs.  This is seen in the literary equation 

7 X1+10 X2 when we add the word maximize 

in front of that linear equation we have a 

program that can operate inside of a software 

application. 

Next we turn our attention to making a 

graph (i.e., the feasible region) of the 

production problem.  The horizontal axis 

represents baseballs and the vertical axis 

represents softballs.  A vertical line should be 

drawn that bisects the 500 number mark on 

the X- axis; this line represents the maximum 

number of baseballs that can be produced.  

The horizontal line should be drawn that 

bisects the 500 mark on the Y-axis this 

represents the maximum number of softballs 

that can be produced.  Next we graph the 

time constraint which is determined by 

drawing a point on the X-axis that represent 

the case that all the time were spent just 

making baseballs.  Total time available is 960 

so the point is at point 960.  The Y-axis, 

which represents the time necessary to make 

softballs, the point would be at 480.  When a 



International Journal of Innovative Research and Practices           Vol.2, Issue 6, June 2014 
ISSN   2321-2926 

N. Santosh Ranganath   3 

line is then drawn across the graph plain, this 

line will represent the time constraint.  

Finally we have to draw the cowhide 

restraint.  This is determined by finding the 

point in the X-axis that represents the case if 

all the cowhide were used on baseballs.  This 

point is 720.  Now we draw a line on the Y-

axis that represents, if all of the cowhide 

were used on softballs.  This number is 600 

we connect those two dots with a line to the 

graph plain. 

Because the cowhide restraint must be less 

than 3600, all the area to the right of the 

cowhide constraint line will not be included 

in the solution.  Because the time constraint 

is equal to or less than 960 all the area above 

the time constraint line will not be included 

in the solution.  Because the limit of 500 

placed on baseballs all the area to the right of 

the baseball constraint line will not be 

included in the solution.  Because the 

constraint of 500 is placed on softballs, all 

the area above the softball constraint line is 

excluded from the solution.  When all of 

these lines are placed on a graph and the 

areas that are excluded are removed, 

including the negative areas, the area that is 

left is called the feasible region.  Any corner 

point of the feasible region can be 

accomplished under present constraints.  In 

order to maximize profits, a point where two 

of the line constraints bisect must be chosen.  

There are four such points in our problems.  

After subtracting linear equation from linear 

equation the best point of manufacturing is 

where the cowhide constraint and the time 

constraint bisect, this point would be 

producing 360 baseballs and 300 softballs. 

As we know, a Formulation of the Wilson 

Manufacturing problem is: X1 = the number 

of dozen baseballs manufactured daily X2 = 

the number of dozen softballs manufactured 

daily.  

Max Objective Function 7 X1+10 X2 

Subject to: 

C1 = X1 ≤ 500 (constraint of production)  

C2 = X2 ≤ 500 (constraint of production) 

C3 = 5 X1 + 6 X2 ≤ 3600 (this is the 

constraint of the material) 

C4 = X1 + 2 X2 ≤ 960 (the constraint of the 

production time available)  

C5 = Xj ≥ 0; j = 1, 2 (non negativity) 

a.   Graph the feasible region for this 

problem (Hand computation is submitted 

separately).  C4 relegates the solution to 

quadrant I.  X1 and X2 must be positive 

numbers (or 0). 

 

 

Wilson is considering manufacturing 300 

dozen baseballs and 300 dozen softballs. 

Applying the constraints: 

C1; X1 < 500;  300 < 500 Constraint is 

satisfied. 

C2: X2 < 500;  300 < 500 Constraint is 

satisfied.  

C3; 5 X1 + 6 X2 < 3600;  

5(300) + 6(300) =3300<3600 Constraint is 

satisfied.  

C4; X1 + 2 X2 < 960;  

300 +2(300) = 900 < 960 Constraint is 

satisfied. 

Since the constraints are satisfied, the 

solution of 300 dozen each is an interior 

point located within the feasible area. 

Wilson considers manufacturing 350 dozen 

baseballs and 350 dozen softballs.  Again, 

applying the constraints: 
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C1; X1  ≤ 500;    350 < 500   Constraint is 

satisfied.  

C2; X2 ≤ 500;    350 < 500  Constraint is 

satisfied. 

C3; 5 X1 + 6 X2 ≤ 3600;  

5(350) +6(350) = 3850 > 3600 Constraint 

is not satisfied. 

C4; X1 + 2 X2 ≤ 960;  

350 + 2(350) = 1050 > 960 Constraint is 

not satisfied. 

Wilson does not have enough materials or 

the time necessary to manufacture according 

to this objective.  Constraints C3 and C4 are 

infeasible points. 

Fore any interior point there is always 

some distance from the constraints which is 

proportional to slack for ≤  and surplus for ≥ 

constraints (making RHS value non- 

negative) that prohibits the optimal solution 

until it has been removed.  The second 

solution lies outside the feasibility region and 

therefore is not possible under the constraints 

imposed. 

b.   Wilson estimates that its profit is $7.00 

per dozen baseballs and $10.00 per dozen 

softballs, the production schedule that 

maximizes their daily profit is found at the 

extreme point, (360, and 300). 

7(360) + 10(300) = 5,520. 

c.   C1; X1 ≤ 500  is a non-binding 

constraint 

C2: X2≤ 500 does not eliminate any points 

from consideration.  It is redundant.  

C3; 5 X1 + 6 X2 ≤ 3600 is a binding 

constraint. 

C4; X1 +2X2 ≤ 960 is a binding constraint.  

C5; Xj ≥ 0, j = 1, 2, are non-binding. 
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