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1 Introduction 

In this paper, we mainly investigate the aggregation 
phenomena and dynamics of the following single 
reaction-diffusion equation for u = u(x,t) with the no-
flux boundary condition: 

ut = ∇ · (d1∇u − χu∇A) + µu(1 − u)(u − θ), 
 (d1∇u − χu∇A) · n = 0,  u(x,0) = u0(x) ≥ 0, 

x ∈ Ω,t > 0, x ∈ 
∂Ω,t > 0, x ∈ Ω. (1.1) 

Here x and t are space and time variables, d1, χ and µ 
are arbitrary positive constants, and n is the unit 
outer normal on the boundary ∂Ω. To construct the 
non-constant steady states, we also focus on the 
stationary problem of (1.1), which is: 

 0 = ∇ · (d1∇u − χu∇A) + µu(1 − u)(u − θ), 

(d1∇u − χu∇A) · n = 0, 

x ∈ Ω, x 
∈ ∂Ω. (1.2) 

Equation (1.1) serves as a paradigm to describe 
the dynamics of one population with the effect of 
some known signal subject to the Allee Principle 
[1,30], where u : Ω × [0, ∞) → [0, ∞) denotes the 
density of a population and A is a known stimulus 
that governs the directed movement; the constant d1 

represents the population diffusion rate, χ reflects the 
strength of the biased movement, while the source 
f(u) := u(1 − u)(u − θ) models the Allee effect and θ 
∈ (0,1) is the Allee threshold. 

The general form of system (1.1) was proposed by 
Cosner and Rodriguez [11], which reads: 

where B[u] = 0 represents either homogeneous 
Dirichlet or no-flux boundary conditions. In 
particular, they obtain a set of qualitative and 
numerical results concerning the short time 
dynamics and steady states of system (1.3). 
Moreover, to study the interaction between two 
species, they extended equation (1.3) to the 
following system: 

 ut = Muu + ug(x,u + v),         (1.4)  
vt = Mvv + vg(x,u + v), 
where (u,v) are the population densities of two species 
and the dispersal operators are defined by 

 Muu := ∇ · (∇u − χ1u∇A), χ1 > 0, 

and 
 Mvv := ∇ · (∇v − χ2v∇A), χ2 > 0; 

while the growth pattern is g(u + v) := (r − u − v)(u − 
v − θ) and where r is the given resources. Some 
numerical results for (1.4) presented in [11] 
demonstrated that two populations cooperate at low 
densities and compete at high densities. 

To study this phenomenon, we consider the 
coupled system (1.4) in the following two cases of χ1 

and χ2: 

(i). χ1 = χ, χ2 = 1, where χ > 0 represents the speed 
of the intra-species; 
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 (ii). χ1 = χ, χ2 = cχ, where constant c > 1 implies the 
inter-species is faster. 

In particular, we prove the existence of non-constant 
steady states for system (1.4) in case (i) and case (ii), 
then study their stability properties. 

1.1 Allee Effect 

The well-accepted definition of Allee effect is the 
positive relationship between population density and 
individual fitness. This effect often occurs under 
situations involving the survival and reproduction of 
animals, such as habitat alteration, mate-finding [13, 
16], etc. 

In terms of the scale, the Allee principle is 
typically decomposed into the component Allee 
effect and the demographic Allee effect. The former 
emphasizes the relationship between any measurable 
component of survival rates and density size [3], 
while the latter highlights the overall correlation 
between them [23]. Many researchers tend to 
consider macro-population problems, and thereby 
the demographic Allee effect is more popular. Some 
significant concept therein is the critical population 
size. When a population threshold exists, the 
demographic Allee effect is the so-called strong 
Allee effect; otherwise it is named the weak Allee 
effect. In general, when the initial density is below 
(above) the critical threshold, the population tends to 
be extinct (persistent). The critical population size is 
called the Allee threshold and the relevant models 
have been intensively studied, see [25, 31– 33]. 

The most popular and simplest equation used to 
model the population dynamics subject to the strong 
Allee effect is 

ut = u(r − u)(u − θ), 

where r represents the environmental resources and θ 
∈ (0,1) is the Allee threshold. Here we define g(u) := 
(r−u)(u−θ) which admits the bistable growth pattern. 
It can be seen that when the environment is 
homogeneous, u ≡ θ and u ≡ r are two constant 
equilibria. In particular, u ≡ θ is unstable and u ≡ r is 
stable. 

1.2 Directed Movement: Taxis and Advection 

A taxis is the mechanism by which organisms direct 
their movements in response to the environmental 
stimulus gradient. In terms of stimulus such as wind, 
light, chemical signal, etc., taxis can be identified as 
Anemotaxis, Phototaxis, Chemotaxis and so on. In 
particular, the effect of taxis on population dynamics 
is often interpreted as the conditional dispersal of 
species [26] and from the viewpoint of mathematical 

modelling, the advection term presents a paradigm to 
model it. 

Combining the biased and unbiased dispersal, 
many reaction-diffusion-advection models have been 
proposed in the literature to analyze biological 
problems involving population dynamics. The 
survey paper [9] summarizes a class of such systems 
and their applications. The conditional dispersal in 
general is a benefit for the persistence of a species 
[2], with the sensible explanation that individuals 
can perceive the favorable environmental signals 
such as the presence of food, and then move towards 
the stimulus and finally aggregate. 

There have been many previous results for the 
case where the population dynamics follows a 
logistic growth [2, 4, 6, 10, 19]. In particular, 
Belgacem and Cosner [2] considered the following 
reaction-diffusion-advection model: 

ut = ∇ · (d1∇u − χu∇A) + µu(A − u), 
     (d1∇u − χu∇A) · n = 0, x ∈ Ω,t > 0, x ∈ ∂Ω 
     u(x,0) = u0(x) ≥ 0, t > 0, x ∈ Ω, 

where the environment is spatially heterogeneous 
and the boundary acts as a reflecting barrier. They 
proved the population tends to be persistent if χ is 
large, which implies that the strong advection effect 
is beneficial. Moreover, they shew that there exists 
some unique non-negative constant ¯µ∗ depending on 
χ such that when µ > µ¯∗, (1.5) admits a unique 
positive global attractor. Cosner and Lou [10] further 
showed that the effect of the biased movement is not 
always beneficial and depends crucially on the shape 
of the domain, where it was established that non-
convex domains can be harmful to the persistence of 
the population. (See also interesting related results in 
Chen and Lou [8].) There are also many different 
results when the boundary condition is assumed to 
be Dirichlet: 

 u(x,t) = 0, x ∈ ∂Ω,t > 0, 
which is the so-called lethal boundary. For instance, 
a strong drift term may be harmful rather than 
helpful [2], and more interesting results were shown 
in [4, 20]. Similar to the logistic growth, Allee 
effects also have rich applications in modelling 
population dynamics. There are a few references 
focused on discussing the models subject to Allee 
effects [5, 27, 27]. 

1.3 Ideal Free Distribution Strategy 

The ideal free distribution (IFD) was introduced by 
Fretwell [15] in 1969 to describe how one species 
distribute individuals to minimize competition and 
maximize fitness. The theory states that under the 
following assumptions: 
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(i). Individuals in the species are homogeneous and 
equally able to access resources; 

(ii). Individuals are free to move in the environment; 

(iii). Organisms understand how to acquire the largest 
amount of resources and maximize fitness, 

the arrangement of individuals exactly matches the 
distribution of resources in the environment. In 
general, the external resources are supposed to be 
located at several sites and form various aggregates, 
then homogeneous individuals will move towards 
sites and distribute themselves among these patches 
of resources. More specifically, the number of 
individuals aggregated in each patch is proportional 
to the amount of available resources. 

The IFD strategy can be modelled by the following 
equation: 

vt = ∇ · (∇v − v∇ lnr) + v(r − v)(v − θ), 

where the external resources, modelled by r, are 
fixed. In this equation, one finds that v = r is an 
equilibrium, which implies the distribution of the 
species is the same as that of resources. In this 
article, we study how the strategies including IFD 
strategy and aggressive strategy, influence the 
persistence of species. 

1.4 Motivations and Main Results 

Cosner and Rodriguez [11] combined the free and 
conditional dispersal to model the movement of a 
population with the assumption that its dynamics is 
governed by the strong Allee Principle. They 
proposed (1.3) and studied the existence of 
equilibrium subject to the lethal boundary and 
reflecting barrier. Furthermore, some numerical 
simulations were presented to illustrate that the 
biased movement plays a vital role on overcoming a 
strong Allee effect. The figures in [11] show if χ is 
large, i.e. the advection effect is strong, the 
population will persist rather than disappear even 
though the initial size is below the Allee threshold θ. 

To confirm this numerical experimental finding, 
we perform theoretical studies by considering system 
(1.1) and (1.2). Our main goal is to rigorously 
construct non-constant solutions of (1.2), and then 
investigate their stability properties within (1.1). In 
particular, since we focus in understanding the 
influence of the conditional dispersal rate χ on the 
strong Allee effect, we set the remaining parameters 
d1 and µ to one. 

An immediate consequence of the no-flux 
boundary condition is the following integral constraint 
satisfied by all classical solutions of (1.2): 

Zu(1 − u)(u − θ)dx = 0. (1.6) 

 

It can be observed from (1.6) that system (1.1) can 
admit different nontrivial patterns. Indeed, some 
formal analysis implies this integral constraint 
determines the height of each local interior spike. 
We suppose A is smooth and radial with only one 
non-degenerate local maximum point at 0. Then we 
expand A as A = A0 − 2

a|x|2 +O(|x|3), where A0 := A(0) 
is the local maximum of A and a := Arr(0) > 0. Set U 
= U0 + ϵU1 + · · · and let χ := ϵ

1
2 , y := ϵ

x, U(y) := u(x), 
F(U) := f(u) to obtain the following 

leading order equation: 
0 = ∇y · (∇yU0 + aU0 · y),  U0(y) → 0, as |y| → ∞,   
F(U0)dy = 0.                                                 (1.7) 

  

U0 = c0e− a2 |y|2.                                     (1.8) 

Upon Substituting U0 into (1.6), we find c0 satisfies 

2 2 c2
0 − (1 + θ)3 2 c0 + 6 2 θ = 0. 

It is easy to check that there exists 

 
where .  
Thanks to (1.12) and (1.8), the asymptotic profiles  
of single interior spikes can be expressed explicitly  
and are shown in Figure 1. 

We would like to point out that when θ ∈ 
(θ1,1), (1.7) only admits the solution U0 = 0 since 
the quadratic equation (1.10) does not have any real 
solution. As a consequence, when θ ∈ (θ1,1), there 
only exists a trivial pattern or the only one non-
trivial spatially homogeneous pattern to (1.1) what 
we are not interested in. Therefore, we only focus 
on the case θ ∈ (0,θ1) rather than θ ∈ [θ1,1). The 
above formal argument supports our claim that the 
height of a spike, given by c0, is determined by the 
integral constraint (1.6) and given by (1.12). 
Moreover, our forthcoming rigorous analysis will 
prove that this statement holds for not only this 
special form for A but also for a more general class 
of A. 

Before stating our main results for the pattern 
formation of (1.1), we discuss the properties of the 
signal A. Indeed, it plays the vital role for the 
formation of nontrivial patterns within (1.1). 
Numerical simulations exhibited in [11] show that 
the non-constant steady states to (1.1) tend to be 
concentrated at the local non-degenerate maximum 
points of A. The formal asymptotic analysis given 
above also confirms this fact. Now, we recall the 
assumptions satisfied by the admissible signal A in 
[11], which are as follows: 

 (
1
.
8
)



International Journal of Innovative Research and Practices        

Figure 1: For a 1-D domain with given 
potential A = 1 − x2, Allee threshold θ = 0.3 
conditional dispersal rate χ = 10, we show the 
leading order profiles of single interior 
defined by (1.8) with c0 = c01 = 1.1339 
c0 = c02 = 0.4582 (right). We shall prove that the 
left single interior spike is stable but the right 
one is unstable. 

(A2). ∥∆A∥L∞(Ω) ≤ M for some constant 

Assumption (A1) and (A2) are technical assumptions 
needed for the analysis. For our analysis below, we 
also propose several new hypotheses on 

(H1). all critical points of A are either local non
degenerate maximum points, or critical points with

∆A > 0; 

0 holds for all x ∈ ∂Ω. 

After supposing A admits exactly k non
local maximum points x1, · · · , xk, where 
· · · , xm

(n)T , m = 1, · · · ,k. we have from 
assumption (A1), (A2) and hypothesis (H1), (H2) 
that A can be expanded at xm as 

A = Am −  X x(i) − xmi T 
h(mij) x(i) − xm(i) 
where Am := A(xm) and −hij

m is the ij-
Hessian matrix of A at xm. It is necessary to point out 
that the Hessian matrix of A at every local non
degenerate maximum point xm is negative 
where the notations h(

m
i), x(i) and xm

substitute  hˆ(
m

i), ˆx(i) and ˆxm
(i) in (1.14), respectively 

without confusing  readers. With the help of the 
above discussion, now we summarize the first set of 
our results regarding the stationary  
following theorem: 

Theorem 1.1. Under the assumptions (A1)
hypotheses (H1)-(H2), for each fixed positive 
integer l satisfying 1 ≤ l ≤ k, we have that there 
exists χ0 such that when χ > χ0, (1.2) admits a 
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for some constant M > 0. 

Assumption (A1) and (A2) are technical assumptions 
needed for the analysis. For our analysis below, we 
also propose several new hypotheses on A: 

(H1). all critical points of A are either local non-
degenerate maximum points, or critical points with 

non-degenerate 
, where xm := xm

(1), 
. we have from 

assumption (A1), (A2) and hypothesis (H1), (H2) 

-th entry of  the 
It is necessary to point out 

at every local non-
is negative definite.

m
(i) are used to 

in (1.14), respectively 
With the help of the 

above discussion, now we summarize the first set of 
 problem in the 

Under the assumptions (A1)-(A2) and 
(H2), for each fixed positive 

k, we have that there 
, (1.2) admits a 

solution having the following  form: 

\Xk− 1 Pn h
m(i)χ(x−x

m(i))2 

Remark 1.1. As is shown in Theorem (1.1), in 
contrast to many reaction-diffusion
models such as the minimal Keller
[21] where the single interior spiky solution is 
unique [7], (1.2) has a variety of single interior 
spikes located at each local non
maximum point of A. 

Numerical Studies and Discusion 

In this section, several set of numerical simulations
are presented to illustrate and highlight our 
theoretical analysis. We apply the finite element 
method in FLEXPDE7 [14] to system (1.1) with the 
error is 10−4. Besides supporting our theoretical 
results, our numerical simulations show that system 
(1.1) admits rich spatial-temporal dynamics.

Figure 3 and Figure 4 exhibit the pattern 
formation within system (1.1) when 
local non-degenerate maximum point. These figures 
illustrate that the single interior spike given by (1.15) 
with the height is c01 is linearly stable. Similarly, 
Figure 5 shows that the single interior spike defined 
in (1.15) with the other positive height is unstable 
and some small perturbation will cause the time
dependent solutions to (1.1) move away from it.

We next present the stability of multi
spikes defined in (1.15) when signal 
local non-degenerate maximum points. Before that, 
the asymptotic profiles of them are shown in Figure 
6. Similar to the single interior spike, our numerical 
result shown in Figure 7 indicates that those multiple 
spiky solutions whose every bump has the larger 
height are local linearly stable. In contrast, once one 
of their bumps admits the smaller height, the 
stationary solutions will become unstable, as shown 
in Figure 8. 

Figure 9 and Figure 10 exhibit the large time 
behavior of solutions to (4.1) and (4.2), respectively. 
From the viewpoint of population ecology, the 
numerical results shown in Figure 9 can be 
interpreted that the conservative species will be 
better off in the long run when the Allee threshold is 
small. This phenomenon is counter
one might believe that the higher speed benefits the 
persistence of a species, so that an aggressive species 
is more likely to survive. Our result demonstrates 
that aggressive strategy is not always optimal and 
that an IFD strategy is preferable for species 
persistence in some cases. A further qualitative result 
shown in Figure 10 is that competitive species does 
not like to coexist and, instead, prefer to occupy all 
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resources by themselves. Our interpretation of this 
result is that aggressive species do not want to share 
any resources with each other. 

Discussion 

We have used the reduction method to construct and 
study the linear stability of localized solutions to the 
single species models (1.1) and competition models 
(1.4) in the limit of an asymptotically large

speed χ ≫ 1. Our main contribution has been the 
rigorous analysis of the existence of localized 
patterns and their stability properties. Under the 
technical assumptions (A1), (A2) and (H1), (H2), we 
shew that (1.1) admits many localized solutions 
when the potential A has multiple maximum points. 
In particular, there are two possible heights for every 
local bump. Regarding the stability properties, we 
proved that once some local bump has the small 
height, the spike will be unstable. We next focused 
on the analysis of the population model (1.4). On the 
one hand, we proved the noncoexistence of intra
species and inter-species who follow the aggressive 
strategy and IFD strategy, respectively. Moreover, 
we found that when the Allee threshold θ = 
species who follows the aggressive strategy will 
persist in the long run; while θ = O 1

n 

strategy will lead 

χ 2
to the extinction of species in some cases. On the 
other hand, with the assumption that two species 
both follow the aggressive strategy, we shew
even though the localized patterns might coexist in 
local bumps, they are unstable and the more 
aggressive species will persist in the long term.

We would like to mention that there are also 
some open problems that deserve future explorations. 
While discussing the existence of interior spike 
steady states, we impose some technical assumptions 
on A; for instance, we assume that 
degenerate maximum points. Whether or not these

spikes in the rectangular area.
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Figure 5: θ = 0.3 and χ = 10. Left: the 
solution of system (1.1) in 1-D at t 
0.009, 1 and 460s with initial data u
0.46e−50χx2 + 0.01cos(2x);  

Right: the solution of system (1.1) 
in 1-D with initial data u
0.46e−50χx2 + 0.001cos(2x
have u(x,t) at t = 460 can rep
the steady state to (1.1) and it is 
shown that the single interior spike 
with the smaller height is unstable 
and converges to either the steady 
state with the larger height or zero 
in a long term. 

Figure 6: For a 1-D domain, we have four 
types of interior spikes constructed in 
Theorem 1.1 with the height of each bump is 
either c01 = 1.1339 or c02 = 0.4582 

potential A 
Allee threshold θ = 0.3 and conditional 
dispersal rate χ = 10. We find that (1.1) 
admits a variety of interior spikes when 
has more than 1 local maximum points 
assumptions can be removed remains an 
open problem. 
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admits a variety of interior spikes when A 
has more than 1 local maximum points 
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Besides the stable interior spikes, we believe that 
(1.1) also admits the stable boundary spikes, and the 
rigorous analysis needs to be established. Regarding 
the population system (1.4), we only study the 
influence of large advection on the population 
evolution of interacting species. The effect of small 
diffusion d1 is apparently another delicate problem 
that deserves probing in the future. 
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