
International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

www.forum4researchers.com 1

Introduction:

The ERC20 token standard is a set of criteria

developed by the Ethereum community for how to

set up smart contracts on the blockchain in order to

ensure optimal interoperability. ERC stands for

Ethereum Request for Comments and this

particular request was to help improve the

standards to which developers should strive to

adhere in developing smart tokens

The ERC20 Token Standard is a set of 6 functions

and 2 events that need to be included (in a specific

agreed upon language and format) in a smart token

contract in order to enable interoperability across

multiple interfaces and distributed applications

(dapps). The 6 functions relate to (1) how tokens

can be transferred (either by its owner or on behalf

of its owner) and (2) how to access data about the

token (name, symbol, total supply, and account

balance). The 2 events are transfers and approvals,

and how they need to be formatted.

ERC20 token standard implementation assumes

two ways of token transferring: (1) transfer

function and (2) approve + transferFrom pattern.

It should be noted that event handling is a well-

known and standard practice in programming. In

case of token standard, a token transfer should be

considered as an event. transfer function of ERC20

does not provide any opportunity to handle the

transfer, i.e. it is silently increasing balance of the

receiver. It is impossible for the receiver to

recognize that transfer occurs if the receiver is a

contract. As the result, the only correct way to

make a token deposit to a contract is approve +

transfer From pattern.

Expansion of ERC-20 System

There are most widely used authentication

procedures in current days.

They are

Abstract: ERC stands for ‘Ethereum Request for Comments’ and this is an official protocol for proposing

improvements to the Ethereum network. The ‘20’ is the unique proposal ID number. ERC20 defines a set of

rules which need to be met in order for a token to be accepted and called as an ERC20 Token. So, these

particular tokens empower developers of all types to accurately predict how new tokens will function within

the larger Ethereum system since these rules are required to interact with each other on the Ethereum

Network. According to etherscan.io, the Ethereum Block explorer, there are a total of 37453 Erc20 Token

Contracts in existence now and this number is increasing by the minute. It means that there are more than

37,000 tokens now which are piggybacking on the Ethereum Network, hosted by Ethereum addresses and sent

by Ethereum Transactions. Since the ERC20 tokens are built atop Ethereum, they are programmable tokens.

The potential of their customization is endless. The use cases of ERC20 tokens are significant and varied

according to the token’s needs. The Dock token also has a multitude of applications built on the Ethereum

network.

A NOVEL CRYPTOCURRENCY - ERC 20

IMPLEMENTATION ON BLOCK CHAIN

Tadepalli Vishal
1
 and Mrs P.Kanaka Tulasi

2

1. M.Tech., BVC college of Engineering, Palacharla ,Rajahmundry.

Asst. Professor Dept of CSE, BVC college of Engineering, Palacharla ,Rajahmundry.

International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

A NOVEL CRYPTOCURRENCY - ERC 20 IMPLEMENTATION ON BLOCK CHAIN 2

Connects the User Data across the web

Today, user data powers almost every consumer

facing app on the web. In a utopian world, the apps

using your data must communicate and interact

with each other solving the problem of multiplicity

of data and eliminates the process of manual

migration of data. So, the Dock.io protocol solves

this problem as an open network bringing about a

revolution on how apps communicate with each

other.

Token based grade systems.

One of the key advantages of an ERC20 token is

how it lets the token holders to participate in the

voting process. The Dock token holders can

introduce new proposals and vote on the future

development roadmap of the protocol. The

roadmap of any open organisation is a living,

breathing document which is not resistant to

change. In fact, the future of the protocol lies in the

hands of the token holders who have the power to

influence and be heard about the direction and the

future of the protocol which creates a truly

decentralised economy for data exchange on the

web.

Accessing, Sharing and ensuring the Quality of

Data

By Design, the tokens have a functional necessity

in terms of accessing, sharing and ensuring the

quality of data.

a) Applications use the Dock tokens when users

want to access data on their platform.

b) Applications are rewarded with Dock tokens

when users create new data to share via the Dock

protocol.

c) The quality of data is also ensured because the

applications are only rewarded when other

applications accept the data.

With all of these advantages of the ERC20 token

and more, they are averse to lesser amounts of risk,

increased uniformity, reduced complexity, and

enhanced liquidity of the Dock tokens which

prompted the core team to invest in the ERC-20 as

it is a crucial aspect of Ethereum now and is going

to be a big part of how it will be shaped in the

future.

Implementation of ERC-20 Token:

Earlier this week the ERC-20 token interface

became a formal improvement proposal, freezing

the definition. This article takes a look at tokens

and explains the features and functions of ERC-20

to provide an understanding of what token contracts

are and how developers can work with them.

ERC-20 came about as an attempt to provide a

common set of features and interfaces for token

contracts in Ethereum, and has proved to be very

successful. ERC-20 has many benefits, including

allowing wallets to provide token balances for

hundreds of different tokens and creating a means

for exchanges to list more tokens by providing

nothing more than the address of the token‟s

contract. The benefits of creating a token as ERC-

20 compliant is such that very few token contracts

today are created any other way.

There remains a lot of confusion around what token

contracts really are. Essentially, a token contract is

a smart contract that contains a map of account

addresses and their balances. The balance

represents a value that is defined by the contract

creator: one token contract might use balances to

represent physical objects, another monetary value,

International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

Tadepalli Vishal and Mrs P.Kanaka Tulasi 3

and a third the holder‟s reputation. The unit of this

balance is commonly called a token.

Here are a few basic terms we are going to use in

this article. If you are familiar with the following

concepts, feel free to skip to the next section.

 Ethereum based ERC20 Tokens: In

Ethereum tokens represent any tradable

goods such as coins, loyalty points etc.

You can create your own crypto-

currencies based on Ethereum.

Additionally the benefit of following

ERC20 standard is that your tokens will be

compatible with any other client or wallets

that use the same standards.

 Smart Contracts: Smart Contracts are

self executing code blocks deployed on

the Ethereum blockchain. They contain

data & code functions. Contracts make

decisions, interact with other contracts,

store data and transfer Ether (the unit of

crypto-currency in the Ethereum

blockchain) among users.

 Solidity: A language for writing smart

contracts.

 MetaMask/Mist/MEW Wallet: A digital

facility that holds your Ether and other

Ethereum based tokens.

Standard of Ethereum’s ERC20 Token

The Ethereum blockchain distinguishes itself from

other blockchains with its innovative decentralized

application (DApp) functionality. Using tokens,

developers can build and launch their very own

DApp on the Ethereum blockchain. However, the

opportunity to create a wide range of token based

DApps also comes with problems, and the

implementation of ERC20 (Ethereum Request for

Comments 20) is designed to tackle those issues.

Firstly, a token is nothing more than a smart

contract that runs on top of the Ethereum

blockchain, with the behavior of the token being

dictated by its code base. Tokens are typically

incorporated into DApps to represent anything of

value, from digital assets, to objects in the physical

world. Before ERC20, if a developer wanted to

enable the cross trading of tokens, e.g. trading

„Token A‟ for „Token B‟, the developer would have

to closely examine the intricate code base behind

Token A and Token B to handle the trade. This

process soon becomes an arduous and complex one

if a developer wants to implement the cross trading

of Token A with Tokens B – Z. The code base

behind each token would have to studied in order to

implement a simple token exchange. ERC20 is

designed to tackle this problem by establishing a

common set of rules that developers must adhere to

in order for their token to be ERC20 compliant.

Although not an obligatory standard, developers are

encouraged to adhere to the ERC20 standards

because of the benefits it brings. As well as easier

cross-token exchange, ERC20 compliant tokens

can also seamlessly interact with various wallets

and exchanges because developers of wallets and

exchanges already understand how compliant

tokens will behave.

In order for a token to be ERC20 compliant, the

code base behind the token must be able to perform

the following functions:

 Retrieve the total token supply.

 Retrieve the token holder‟s account

balance.

 Transfer the token from the owner to

another party.

International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

A NOVEL CRYPTOCURRENCY - ERC 20 IMPLEMENTATION ON BLOCK CHAIN 4

 Approve use of the token as a monetary

asset.

ERC20 is a major step for the Ethereum

blockchain. With aims to create an ecosystem of

seamlessly integrated DApps, ERC20 is a positive

step in the right direction by encouraging

interoperability between tokens.

There are two different ways to transfer ERC20

tokens depending on whether you intend to send

the tokens directly or delegate the transfer to

another smart contract. You can either

call transfer to send tokens to a wallet address or

call approve, and then trigger transferfrom the

receiver contract, in order for it to be aware of the

transfer and handle it accordingly.

The token fallback function, which will be called at

the receiver contract, must be named tokenFallback

and take the parameters:(address, uint256, bytes).

It‟s an analogue of the fallback function for ETH

transactions and should be used to handle incoming

transactions.

Inability of handling incoming token

transactions

By sending ERC20 tokens using the transfer

function, the token contract is not notifying the

receiver that a transaction had occurred. The tokens

are just simply credited to the address of the

receiver. In addition to that, there is no way to

handle incoming token transactions on contracts

and no way to reject or handle any non-supported

tokens.

In addition to preventing tokens getting lost, the

new transfer method will also allow the smart

contract to actively handle sent tokens (e.g., an

exchange smart contract can react to a token

transfer by crediting the token balance of the user

Token Transfer Uniformity

An ERC20 token transaction between a

regular/non-contract address and contract are two

different transactions: You should call approve on

the token contract and then call transferFrom on the

other contract when you want to deposit your

tokens into it.

ERC-20 simplifies this requirement and allows

using the same transfer function. ERC-20 tokens

can be sent by calling transfer function on the token

contract with no difference if the receiver is a

contract or a wallet address, since there is a new

way to notify the receive contract of the transfer.

If the receiver is a a regular/non-contract address,

an ERC-20 token transfer will be the same as an

ERC-20 transfer. On the other hand, if the receiver

is a contract, then the ERC-20 token contract will

try to call tokenFallback function on receiver

contract. If there is no tokenFallback function on

receiver contract, the transaction will fail.

For example, a decentralized exchange will no

longer need to force users to call approve at the

token contract, then call deposit to call

transferFrom and take allowed tokens. The token

transaction will automatically be handled inside the

exchange contract, via the tokenFallback function.

ERC-20 Empowers Developers

In short, the ERC-20 defines a common list of rules

for all Ethereum tokens to follow, meaning that this

particular token empowers developers of all types

to accurately predict how new tokens will function

within the larger Ethereum system. The impact that

ERC-20 therefore has on developers is massive, as

projects do not need to be redone each time a new

token is released. Rather, they are designed to be

compatible with new tokens, provided those tokens

International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

Tadepalli Vishal and Mrs P.Kanaka Tulasi 5

adhere to the rules. Developers of new tokens have

by-and-large observed the ERC-20 rules, meaning

that most of the tokens released through Ethereum

initial coin offerings are ERC-20 compliant.

ERC-20 Specifies Six Functions

ERC-20 defines six different functions for the

benefit of other tokens within the Ethereum system.

These are generally basic functionality issues,

including how tokens are transferred and how users

can access data about a token. ERC-20 also

prescribes two different signals that each token

takes on and which other tokens are attuned to.

Put together, this set of functions and signals

ensures that Ethereum tokens of different types will

typically work the same in any place within the

Ethereum system. This means that almost all of the

wallets which support the ether currency also

support ERC-20 compliant tokens.

ERC-20 is technically still in draft form, meaning

that it has gone unenforced by the broader

Ethereum community. Still, it seems that the

momentum is strong enough that all new tokens are

highly likely to conform to the ERC-20 rules.

Because the standard remains young, there will

likely be some troubleshooting which must occur

as Ethereum continues to develop. One significant

issue with Ethereum tokens so far is that tokens

sent directly to a smart contract will lose money.

An error in the protocol means that a token's

contract cannot respond to an attempt to make a

direct transfer, resulting in the "loss" of the money

associated with that transfer.

Process Authentic Functioning of ERC:

ERC stands for Ethereum Request for Comments.

An ERC is authored by Ethereum community

developers in the form of a memorandum

describing methods, behaviors, research, or

innovations applicable to the working of the

Ethereum ecosystem. It is submitted either for peer

review or simply to convey new concepts or

information. After core developers and community

approval, the proposal becomes a standard.

Therefore, as a result, we have a set of standards or

proposals (e.g. for tokens). Actually, these rules are

simple set of functions that Smart Contract should

implement. In return, contracts, implementing the

standard can be used via a single interface. The best

example is ERC-20 standard. All Smart Contracts

implementing this standard, by default can be listed

to crypto exchanges without any extra technical

work.

ERC-20

It is the most common and well-known standard

within all crypto community. 99% (if not all)

issued ICO tokens on top of the Ethereum

implements this standard. Actually, it is just a

simple set of functions that your token code has to

have. For those who can read the code, the contract

below is very simple to understand.

The key benefit we get here, is that any application

or other smart contract can interact with a token in

a standard manner without a need of knowing other

details about the token.

Therefore, we have a very pleasant way to create

any ICO token and have a standard way to interact

with all of them like they are all the same. For

instance, crypto wallet developers can avoid

custom development and integrations to add new

tokens. All they need to know is the Ethereum

Token address that implements the standard.

International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

A NOVEL CRYPTOCURRENCY - ERC 20 IMPLEMENTATION ON BLOCK CHAIN 6

Enhance of ERC-20

There is no phrase like "If you send your tokens to

the address or a contract that is not intended to

work with tokens then your tokens are permanently

lost." We should keep in mind that we are talking

about the Ethereum smart-contracts. In case of

Ether transaction, every time a transaction is

invoked incorrectly (a receiver is unable to handle

transaction or a receiver is a contract that is not

intended to work with Ether), an error is thrown

and the transaction is reverted.

Thus, the expected behavior is that in the event of

an error caused by the recipient's inability to handle

the incoming transaction, such a transaction should

fail.

Ethereum users are often familiar with Ether

transactions. As the result, the expected behavior is

that if a transfer of tokens is invoked incorrectly (a

receiver is unable to handle transaction or a

receiver is a contract that is not intended to work

with tokens), an error must be thrown.

The statement "... produce an incorrect or

unexpected result, or to behave in unintended

ways", which is a property of a program error, is of

decisive importance here. The "bug of ERC20

transfers" is the unexpected behavior

of transfer function in this case.

The statement "... prompting a user to make a

security decision without giving the user enough

information to answer it. " which is a property of

Software Vulnerability, is of decisive importance

here.

There is no sufficient information at the ERC20

token standard definition about the behavior of

transfer function in case of the error-handling. A

phrase "WARNING: If you will call this function

to transfer your tokens to any contract then your

tokens are permanently lost." MUST be added to

the definition of transfer function of the ERC20

token standard.

A phrase "Calling the transfer function to transfer

your tokens to contracts is prohibited in this token

standard." MUST be added to the Abstract section

of the ERC #20 token standard.

This is required to make each token and UI

developer aware of what they are working with.

This is what is missing at ERC20 standard.

As soon as this will be implemented, each token

developer and UI developer MUST place a big red

banner "WARNIGN: You are attempting to use

ERC20 token, you should know that if you call a

transfer function to send tokens to a contract then

your tokens are permanently lost." Otherwise it will

be a Software Vulnerability: User Interface fault

Authors:

1. TADEPALLI VISHAL, M.Tech., BVC

college of Engineering, Palacharla,

Rajahmundry. (146M1D5804)

2. Mrs P. KANAKA TULASI is working

as Associate professor in Department of

Computer Science & Engineering at

BVC College of Engineering,

Rajahmundry. She has a total technical

experience of 7 years.

References:

1. S. Chiasson, P. van Oorschot, and R. Biddle,

“Graphical Password Authentication Using

Cued Click Points,” Proc. European

Symp.Research in Computer Security

(ESORICS), pp. 359-374, Sept. 2007

International Journal of Innovative Research and Practices Vol.6, Issue 1, January 2018
ISSN 2321-2926

Tadepalli Vishal and Mrs P.Kanaka Tulasi 7

2. Anderson, F. Bergadano, B. Crispo, J.H. Lee,

C. Manifavas, R. Needham, “A New Family

of Authentication Protocols”, ACM OSR,

1998.

3. B. Groza, "Broadcast authentication protocol

with time synchronization and quadratic

residues chains", Second International

Conference on Availability, Reliability and

Security (ARES‟07), pp. 550-557, IEEE

Comp. Soc., 2007.

4. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D.

Tygar, “SPINS: Security Protocols for Sensor

Network”, Proceedings of Seventh Annual

International Conference on Mobile

Computing and Networks MOBICOM, 2001.

5. Groza, T.L. Dragomir, "On the use of one-

way chain based authentication in secure

control systems", Second International

Conference on Availability, Reliability and

Security ARES‟07), pp. 1214-1221, IEEE

Comp. Soc., 2007.

6. Authentication Mechanism” IEEE

TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, VOL. 9, NO. 2,

MARCH/APRIL 2012

7. FIPS 180-1, National Institute of Standards

and Technology (NIST). “Announcing the

Secure Hash Standard”, U.S. Department of

Commerce, 1995.

8. Groza, “Using one-way chains to provide

message authentication without shared

secrets”, Second International Workshop on

Security, Privacy and Trust in Pervasive and

Ubiquitous Computing, SecPerU 2006, IEEE

Comp. Soc., 2006.

9. Mitra Sing, D. Cavagnino, D.Narasimha,

“Individual Authentication in Multiparty

Communications”. Computer & Security,

Elsevier Science, vol. 21 n. 8, 2002, pp.719-

735.

10. N. Haller, C. Metz, P. Nesser, M. Straw, “A

One-Time Password System”, RFC 2289,

Bellcore, Kaman Sciences Corporation,

Nesser and Nesser Consulting, 1998.

11. L. Lamport, “Password Authentication with

Insecure Communication”, Communication

of the ACM, 24, 770-772, 1981.

