
International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

www.forum4researchers.com 9

Introduction:

In a cloud computing environment, failure is the

norm, and chunk servers may be upgraded,

replaced, and added in the system. Files can also be

dynamically created, deleted, and appended. That

leads to load imbalance in a distributed file system,

meaning that the file chunks are not distributed

equitably between the nodes. Distributed file

systems in clouds such as GFS and HDFS rely on

central servers (master for GFS and Name Node for

HDFS) to manage the metadata and the load

balancing. The master rebalances replicas

periodically: data must be moved form a Data

Node/ chunk server to another one if its free space

is below a certain threshold. However, this

centralized approach can provoke a bottleneck for

those servers as they become unable to manage a

large number of file accesses. Consequently,

dealing with the load imbalance problem with the

central nodes complicates more the situation as it

increases their heavy loads. The load rebalance

problem is NP-hard In order to manage large

number of chunk servers to work in collaboration,

and solve the problem of load balancing in

distributed file systems, several approaches have

been proposed such as reallocating file chunks such

that the chunks can be distributed to the system as

uniformly as possible while reducing the movement

cost as much as possible. Among the biggest

internet companies, Google has created its own

distributed file system named Google File System

to meet the rapidly growing requests of Google's

data processing needs and it is used for all cloud

Abstract: File system that allows many clients to have access to the same data/file providing important

operations (create, delete, modify, read, write). Each file may be partitioned into several parts called chunks.

Each chunk is stored in remote machines. Typically, data is stored in files in a hierarchical tree where the

nodes represent the directories. Hence, it facilitates the parallel execution of applications. There are several

ways to share files in a distributed architecture. Each solution must be suitable for a certain type of

application relying on how complex is the application or how simple it is. Meanwhile, the security of the

system must be ensured. Confidentiality, availability and integrity are the main keys for a secure system.

Nowadays, users can share resources from any computer/device, anywhere and everywhere through internet

thanks to cloud computing which is typically characterized by the scalable and elastic resources -such as

physical servers, applications and any services that are virtualized and allocated dynamically. Thus,

synchronization is required to make sure that all devices are update. Distributed file systems enable also many

big, medium and small enterprises to store and access their remote data exactly as they do locally, facilitating

the use of variable resources. As cloud computing provides a large-scale computing thanks to its ability of

providing to the user the needful CPU and storage resources with a complete transparency, it makes it very

suitable to different types of applications that require a large-scale distributed processing. That kind of Data-

intensive computing needs a high performance file system that can share data between VMs (Virtual

machine).

Key Words: Vectors, Cloud computing, Load balance, distributed file systems, clouds

.

Distributed File of Load Rebalancing Systems in Clouds

Mr. G. Jyothi Krishna
1
 and Mr. A.V.S. Pavan Kumar

2

1. Final Year M.Tech, Department of CSE, Baba Institute of Technology and Sciences, Visakhapatnam,

AP, India.

2. Assistant Professor Department of CSE, Baba Institute of Technology and Sciences, Visakhapatnam,

AP, India

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

Distributed File of Load Rebalancing Systems in Clouds 10

services. GFS is a scalable distributed file system

for data-intensive applications. It provides a fault-

tolerant way to store data and offer a high

performance to a large number of clients.GFS uses

Map Reduce that allows users to create programs

and run them on multiple machines without

thinking about the parallelization and load-

balancing issues . GFS architecture is based on a

single master, multiple chunk servers and multiple

clients. The master server running on a dedicated

node is responsible for coordinating storage

resources and managing files's metadata (such as

the equivalent of inodes in classical file systems).

Each file is split to multiple chunks of 64

Megabyte. Each chunk is stored in a chunk server.

A chunk is identified by a chunk handle, which is a

globally unique 64-bit number that is assigned by

the master when the chunk is first created. As said

previously, the master maintain all of the files's

metadata including their names, directories and the

mapping of files to the list of chunks that contain

each file’s data. The metadata is kept in the master

main memory, along with the mapping of files to

chunks. Updates of these data are logged to the disk

onto an operation log. This operation log is also

replicated onto remote machines. When the log

become too large, a checkpoint is made and the

main-memory data is stored in a B-tree structure to

facilitate the mapped back into main memory

we present a new methodology for managing read-

write file sets across multiple file servers of a

Distributed File System, thus balancing the load of

file access requests across servers. The proposed

methodology is based on a rule-based data mining

technique and graph theory algorithms. The rule-

based technique generates rules from access request

data to identify present file access patterns in the

system. We then use the rules, graph analysis and

statistical information (usage and size of the

filesets) to relocate the filesets between different

file servers. The algorithm for fileset relocation is

based on the graph coloring problem. We tested our

algorithms on data collected for five months on

DFS file servers in a production environment.

Experiments with the data show that our

methodology can make intelligent decisions about

file system transfers in order to balance the access

request load across DFS servers.

Claws in Load Rebalancing:

In the classical load balancing or multiprocessor

scheduling problem, we are given a sequence of

jobs of varying sizes and are asked to assign each

job to one of the m empty processors. A typical

objective is to minimize the make span, which is

the load on the heaviest loaded processor. Since in

most real world scenarios the load is a dynamic

measure, the initial assignment may not remain

optimal over time. Motivated by such

considerations in a variety of systems, we

formulate the problem of load rebalancing--given a

possibly suboptimal assignment of jobs to

processors, relocate a set of the jobs so as to

decrease the make span. Specifically, the goal is to

achieve the best possible make span under the

constraint that no more than k jobs are relocated.

We also consider the weighted version of this

problem where there is an arbitrary cost associated

with each job's relocation. The problem is NP-hard

and hence, we focus on approximation algorithms.

We construct an algorithm which achieves a 1.5-

approximation, with near linear running time. We

also show that the problem has a PTAS, thereby

resolving the complexity issue. Finally, we

investigate the approximability of several

extensions of the load rebalancing model.

Mode of Action:

Acceleration is split into three parts. The first is a

high speed web cache, providing the possibility to

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

G. Jyothi Krishna and A.V.S. Pavan Kumar 11

cache all static content of applications. The second

part is compression which can be applied to all

content. Both parts are designed to speed up

application delivery. Third part is Server Load

Balancing. Applications can now spread of several

application servers reducing the risk on downtimes

and accelerate application response times.

DenyAll’s solutions are helping to avoid following

issues:

• Webpage downtime

• Long loading times

• To much web traffic

The benefits of Load Balancing solutions are the

following:

• Fulfill strong Service Level Agreements

• Speed up Web applications

• Fault tolerant

 Technologies used by Deny All products are

unique on the market:

• Profile based configuration

• Standard templates available

• Easy and reliable configuration

Technical Overview:

Network Load Balancing, a clustering technology

included in the Microsoft Windows 2000 Advanced

Server and Datacenter Server operating systems,

enhances the scalability and availability of mission-

critical, TCP/IP-based services, such as Web,

Terminal Services, virtual private networking, and

streaming media servers. This component runs

within cluster hosts as part of the Windows 2000

operating system and requires no dedicated

hardware support. To scale performance, Network

Load Balancing distributes IP traffic across

multiple cluster hosts. It also ensures high

availability by detecting host failures and

automatically redistributing traffic to the surviving

hosts. Network Load Balancing provides remote

controllability and supports rolling upgrades from

the Windows NT 4.0 operating system.

The unique and fully distributed architecture of

Network Load Balancing enables it to deliver very

high performance and failover protection,

especially in comparison with dispatcher-based

load balancers. This white paper describes the key

features of this technology and explores its internal

architecture and performance characteristics in

detail.

Internet server programs supporting mission-

critical applications such as financial transactions,

database access, corporate intranets, and other key

functions must run 24 hours a day, seven days a

week. And networks need the ability to scale

performance to handle large volumes of client

requests without creating unwanted delays. For

these reasons, clustering is of wide interest to the

enterprise. Clustering enables a group of

independent servers to be managed as a single

system for higher availability, easier manageability,

and greater scalability.

The Microsoft® Windows® 2000 Advanced Server

and Datacenter Server operating systems include

two clustering technologies designed for this

purpose: Cluster service, which is intended

primarily to provide failover support for critical

line-of-business applications such as databases,

messaging systems, and file/print services; and

Network Load Balancing, which serves to balance

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

Distributed File of Load Rebalancing Systems in Clouds 12

incoming IP traffic among multi-node clusters. We

will treat this latter technology in detail here.

Network Load Balancing provides scalability and

high availability to enterprise-wide TCP/IP

services, such as Web, Terminal Services, proxy,

Virtual Private Networking (VPN), and streaming

media services. Network Load Balancing brings

special value to enterprises deploying TCP/IP

services, such as e-commerce applications, that link

clients with transaction applications and back-end

databases.

Network Load Balancing servers (also called hosts)

in a cluster communicate among themselves to

provide key benefits, including:

• Scalability. Network Load Balancing

scales the performance of a server-based program,

such as a Web server, by distributing its client

requests across multiple servers within the cluster.

As traffic increases, additional servers can be added

to the cluster, with up to 32 servers possible in any

one cluster.

• High availability. Network Load

Balancing provides high availability by

automatically detecting the failure of a server and

repartitioning client traffic among the remaining

servers within ten seconds, while providing users

with continuous service.

Network Load Balancing distributes IP traffic to

multiple copies (or instances) of a TCP/IP service,

such as a Web server, each running on a host within

the cluster. Network Load Balancing transparently

partitions the client requests among the hosts and

lets the clients access the cluster using one or more

"virtual" IP addresses. From the client's point of

view, the cluster appears to be a single server that

answers these client requests. As enterprise traffic

increases, network administrators can simply plug

another server into the cluster.

For example, the clustered hosts in Figure 1 below

work together to service network traffic from the

Internet. Each server runs a copy of an IP-based

service, such as Internet Information Services 5.0

(IIS), and Network Load Balancing distributes the

networking workload among them. This speeds up

normal processing so that Internet clients see faster

turnaround on their requests. For added system

availability, the back-end application (a database,

for example) may operate on a two-node cluster

running Cluster service.

A four-host cluster works as a single virtual server

to handle network traffic. Each host runs its own

copy of the server with Network Load Balancing

distributing the work among the four hosts.

Advantages of Network Load Balancing:

Network Load Balancing is superior to other

software solutions such as round robin DNS

(RRDNS), which distributes workload among

multiple servers but does not provide a mechanism

for server availability. If a server within the host

fails, RRDNS, unlike Network Load Balancing,

will continue to send it work until a network

https://msdn.microsoft.com/en-us/library/Bb742455.nlbovw01_big(l=en-us).gif

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

G. Jyothi Krishna and A.V.S. Pavan Kumar 13

administrator detects the failure and removes the

server from the DNS address list. This results in

service disruption for clients. Network Load

Balancing also has advantages over other load

balancing solutions—both hardware- and software-

based—that introduce single points of failure or

performance bottlenecks by using a centralized

dispatcher. Because Network Load Balancing has

no proprietary hardware requirements, any

industry-standard compatible computer can be

used. This provides significant cost savings when

compared to proprietary hardware load balancing

solutions.

The unique and fully distributed software

architecture of Network Load Balancing enables it

to deliver the industry's best load balancing

performance and availability. The specific

advantages of this architecture are described below

in the "Network Load Balancing Architecture"

section.

Installing and Managing Network Load Balancing

Network Load Balancing is automatically installed

and can be optionally enabled on the Advanced

Server and Datacenter Server versions of the

Windows 2000 operating system. It operates as an

optional service for local area network (LAN)

connections and can be enabled for one LAN

connection in the system; this LAN connection is

known as the cluster adapter. No hardware changes

are required to install and run Network Load

Balancing. Since it is compatible with almost all

Ethernet and Fiber Distributed Data Interface

(FDDI) network adapters, it has no specific

hardware compatibility list.

IP Addresses

Once Network Load Balancing is enabled, its

parameters are configured using its Properties

dialog box, as described in the online help guide.

The cluster is assigned a primary IP address, which

represents a virtual IP address to which all cluster

hosts respond. The remote control program

provided as a part of Network Load Balancing uses

this IP address to identify a target cluster. Each

cluster host also can be assigned a dedicated IP

address for network traffic unique to that particular

host within the cluster. Network Load Balancing

never load-balances traffic for the dedicated IP

address. Instead, it load-balances incoming traffic

from all IP addresses other than the dedicated IP

address.

When configuring Network Load Balancing, it is

important to enter the dedicated IP address, primary

IP address, and other optional virtual IP addresses

into the TCP/IP Properties dialog box in order to

enable the host's TCP/IP stack to respond to these

IP addresses. The dedicated IP address is always

entered first so that outgoing connections from the

cluster host are sourced with this IP address instead

of a virtual IP address. Otherwise, replies to the

cluster host could be inadvertently load-balanced

by Network Load Balancing and delivered to

another cluster host. Some services, such as the

Point-to-Point Tunneling Protocol (PPTP) server,

do not allow outgoing connections to be sourced

from a different IP address, and thus a dedicated IP

address cannot be used with them.

Host Priorities

Each cluster host is assigned a unique host priority

in the range of 1 to 32, where lower numbers

denote higher priorities. The host with the highest

host priority (lowest numeric value) is called the

default host. It handles all client traffic for the

virtual IP addresses that is not specifically intended

to be load-balanced. This ensures that server

applications not configured for load balancing only

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

Distributed File of Load Rebalancing Systems in Clouds 14

receive client traffic on a single host. If the default

host fails, the host with the next highest priority

takes over as default host.

Port Rules:

Network Load Balancing uses port rules to

customize load balancing for a consecutive numeric

range of server ports. Port rules can select either

multiple-host or single-host load-balancing

policies. With multiple-host load balancing,

incoming client requests are distributed among all

cluster hosts, and a load percentage can be

specified for each host. Load percentages allow

hosts with higher capacity to receive a larger

fraction of the total client load. Single-host load

balancing directs all client requests to the host with

highest handling priority. The handling priority

essentially overrides the host priority for the port

range and allows different hosts to individually

handle all client traffic for specific server

applications. Port rules also can be used to block

undesired network access to certain IP ports.

When a port rule uses multiple-host load balancing,

one of three client affinity modes is selected. When

no client affinity mode is selected, Network Load

Balancing load-balances client traffic from one IP

address and different source ports on multiple-

cluster hosts. This maximizes the granularity of

load balancing and minimizes response time to

clients. To assist in managing client sessions, the

default single-client affinity mode load-balances all

network traffic from a given client's IP address on a

single-cluster host. The class Affinity mode further

constrains this to load-balance all client traffic from

a single class C address space. See the "Managing

Application State" section below for more

information on session support.

By default, Network Load Balancing is configured

with a single port rule that covers all ports (0-

65,535) with multiple-host load balancing and

single-client affinity. This rule can be used for most

applications. It is important that this rule not be

modified for VPN applications and whenever IP

fragmentation is expected. This ensures that

fragments are efficiently handled by the cluster

hosts.

Remote Control

Network Load Balancing provides a remote control

program (Wlbs.exe) that allows system

administrators to remotely query the status of

clusters and control operations from a cluster host

or from any networked computer running Windows

2000. This program can be incorporated into scripts

and monitoring programs to automate cluster

control. Monitoring services are widely available

for most client/server applications. Remote control

operations include starting and stopping either

single hosts or the entire cluster. In addition, load

balancing for individual port rules can be enabled

or disabled on one or more hosts. New traffic can

be blocked on a host while allowing ongoing TCP

connections to complete prior to removing the host

from the cluster. Although remote control

commands are password-protected, individual

cluster hosts can disable remote control operations

to enhance security.

Managing Server Applications:

Server applications need not be modified for load

balancing. However, the system administrator starts

load-balanced applications on all cluster hosts.

Network Load Balancing does not directly monitor

server applications, such as Web servers, for

continuous and correct operation. Monitoring

services are widely available for most client/server

applications. Instead, Network Load Balancing

provides the mechanisms needed by application

monitors to control cluster operations—for

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

G. Jyothi Krishna and A.V.S. Pavan Kumar 15

example, to remove a host from the cluster if an

application fails or displays erratic behavior. When

an application failure is detected, the application

monitor uses the Network Load Balancing remote

control program to stop individual cluster hosts

and/or disable load balancing for specific port

ranges.

Maintenance and Rolling Upgrades

Computers can be taken offline for preventive

maintenance without disturbing cluster operations.

Network Load Balancing also supports rolling

upgrades to allow software or hardware upgrades

without shutting down the cluster or disrupting

service. Upgrades can be individually applied to

each server, which immediately rejoins the cluster.

Network Load Balancing hosts can run in mixed

clusters with hosts running the Windows NT®

Load Balancing Service (WLBS) under Windows

NT 4.0. Rolling upgrades can be performed without

interrupting cluster services by taking individual

hosts out of the cluster, upgrading them to

Windows 2000, and then placing them back in the

cluster. (Note that the first port in the default port

range has been changed for Windows 2000 from 1

to 0, and the port rules must always be compatible

for all cluster hosts.)

Working mode of Network Load Balancing:

Network Load Balancing scales the performance of

a server-based program, such as a Web server, by

distributing its client requests among multiple

servers within the cluster. With Network Load

Balancing, each incoming IP packet is received by

each host, but only accepted by the intended

recipient. The cluster hosts concurrently respond to

different client requests, even multiple requests

from the same client. For example, a Web browser

may obtain the various images within a single Web

page from different hosts in a load-balanced

cluster. This speeds up processing and shortens the

response time to clients.

Each Network Load Balancing host can specify the

load percentage that it will handle, or the load can

be equally distributed among all of the hosts. Using

these load percentages, each Network Load

Balancing server selects and handles a portion of

the workload. Clients are statistically distributed

among cluster hosts so that each server receives its

percentage of incoming requests. This load balance

dynamically changes when hosts enter or leave the

cluster. In this version, the load balance does not

change in response to varying server loads (such as

CPU or memory usage). For applications, such as

Web servers, which have numerous clients and

relatively short-lived client requests, the ability of

Network Load Balancing to distribute workload

through statistical mapping efficiently balances

loads and provides fast response to cluster changes.

Network Load Balancing cluster servers emit a

heartbeat message to other hosts in the cluster, and

listen for the heartbeat of other hosts. If a server in

a cluster fails, the remaining hosts adjust and

redistribute the workload while maintaining

continuous service to their clients. Although

existing connections to an offline host are lost, the

Internet services nevertheless remain continuously

available. In most cases (for example, with Web

servers), client software automatically retries the

failed connections, and the clients experience only

a few seconds' delay in receiving a response.

Architecture:

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

Distributed File of Load Rebalancing Systems in Clouds 16

File is partitioned to fixed-size chunks Name node

manages a centralized directory for accesses like

create, delete, append, etc. Could have a backup

standby Data node stores file chunks Data nodes

may fail arbitrarily, and be added dynamically

Scale: ×10, 000 Both name node and data node are

capable of computation and storage. Network Load

Balancing runs as a network driver logically

situated beneath higher-level application protocols,

such as HTTP and FTP. Figure 2 below shows the

implementation of Network Load Balancing as an

intermediate driver in the Windows 2000 network

stack.

Network Load Balancing Performance

The performance impact of Network Load

Balancing can be measured in four key areas:

 CPU overhead on the cluster hosts, which

is the CPU percentage required to analyze

and filter network packets (lower is

better).

 Response time to clients, which increases

with the non-overlapped portion of CPU

overhead, called latency (lower is better).

 Throughput to clients, which increases

with additional client traffic that the

cluster can handle prior to saturating the

cluster hosts (higher is better).

 Switch occupancy, which increases with

additional client traffic (lower is better)

and must not adversely affect port

bandwidth.

Existing System:

State-of-the-art distributed file systems (e.g.,

Google GFS and Hadoop HDFS) in clouds rely on

central nodes to manage the metadata information

of the file systems and to balance the loads of

storage nodes based on that metadata. The

centralized approach simplifies the design and

implementation of a distributed file system.

However, recent experience concludes that when

the number of storage nodes, the number of files

and the number of accesses to files increase

linearly, the central nodes (e.g., the master in

Google GFS) become a performance bottleneck, as

they are unable to accommodate a large number of

file accesses due to clients and Map Reduce

applications.

Disadvantages of Existing System:

The most existing solutions are designed without

considering both movement cost and node

heterogeneity and may introduce significant

maintenance network traffic to the DHTs.

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

G. Jyothi Krishna and A.V.S. Pavan Kumar 17

Proposed System:

 In this paper, we are interested in studying

the load rebalancing problem in

distributed file systems specialized for

large-scale, dynamic and data-intensive

clouds. (The terms “rebalance” and

“balance” are interchangeable in this

paper.) Such a large-scale cloud has

hundreds or thousands of nodes (and may

reach tens of thousands in the future).

 Our objective is to allocate the chunks of

files as uniformly as possible among the

nodes such that no node manages an

excessive number of chunks. Additionally,

we aim to reduce network traffic (or

movement cost) caused by rebalancing

the loads of nodes as much as possible to

maximize the network bandwidth

available to normal applications.

Moreover, as failure is the norm, nodes are

newly added to sustain the overall system

performance, resulting in the

heterogeneity of nodes. Exploiting capable

nodes to improve the system performance

is, thus, demanded.

 Our proposal not only takes advantage of

physical network locality in the

reallocation of file chunks to reduce the

movement cost but also exploits capable

nodes to improve the overall system

performance.

Advantages of Proposed System:

 This eliminates the dependence on central

nodes.

 Our proposed algorithm operates in a

distributed manner in which nodes

perform their load-balancing tasks

independently without synchronization or

global knowledge regarding the system.

 Algorithm reduces algorithmic overhead

introduced to the DHTs as much as

possible.

Virtual Response:

A novel load-balancing algorithm to deal with the

load rebalancing problem in large-scale, dynamic,

and distributed file systems in clouds has been

presented in this paper. Our proposal strives to

balance the loads of nodes and reduce the

demanded movement cost as much as possible,

while taking advantage of physical network locality

and node heterogeneity. In the absence of

representative real workloads (i.e., the distributions

of file chunks in a large scale storage system) in the

public domain, we have investigated the

performance of our proposal and compared it

against competing algorithms through synthesized

probabilistic distributions of file chunks. The

synthesis workloads stress test the load-balancing

algorithms by creating a few storage nodes that are

heavily loaded. The computer simulation results are

encouraging, indicating that our proposed

algorithm performs very well. Our proposal is

comparable to the centralized algorithm in the

Hadoop HDFS production system and dramatically

outperforms the competing distributed algorithm in

terms of load imbalance factor, movement cost, and

algorithmic overhead. Particularly, our load-

balancing algorithm exhibits a fast convergence

rate. The efficiency and effectiveness of our design

are further validated by analytical models and a real

implementation with a small-scale cluster

environment.

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

Distributed File of Load Rebalancing Systems in Clouds 18

Reference:

Load Rebalancing for Distributed File Systems in

Clouds Hung-Chang Hsiao, Member, IEEE

Computer Society, Hsueh-Yi Chung, Haiying Shen,

Member, IEEE, and Yu-Chang Chao

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnu

mber=6175892

Hadoop Distributed File System,

http://hadoop.apache.org/hdfs/.

S. Ghemawat, H. Gobioff, and S.-T. Leung, "The

Google File System," in Proc. 19th ACM Symp.

Operating Systems Principles (SOSP'03), Oct.

2003, pp. 29-43.

K. McKusick and S. Quinlan, "GFS: Evolution on

Fast-Forward," Commun. ACM, vol. 53, no. 3, pp.

42-49, Jan. 2010.

Full Text: Access at ACM

F. B. Schmuck and R. L. Haskin, "GPFS: A

Shared-Disk File System for Large Computing

Clusters," in Proc. USENIX Conf. File and Storage

Technologies (FAST'02), Jan. 2002, pp. 231-244.

Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian,

"Supporting Scalable and Adaptive Metadata

Management in Ultra Large-scale File Systems,"

IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 4,

pp. 580-593, Apr. 2011.

Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,

M. F. Kaashoek, F. Dabek, and H. Balakrishnan,

"Chord: a Scalable Peer-to-Peer Lookup Protocol

for Internet Applications," IEEE/ACM Trans.

Netw., vol. 11, no. 1, pp. 17-21, Feb. 2003.

Rowstron and P. Druschel, "Pastry: Scalable,

Distributed Object Location and Routing for Large-

Scale Peer-to-Peer Systems," LNCS 2218, pp. 161-

172, Nov. 2001.

G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels,

"Dynamo: Amazon's Highly Available Key-value

Store," in Proc. 21st ACM Symp. Operating

Systems Principles (SOSP'07), Oct. 2007, pp. 205-

220.

D. Karger and M. Ruhl, "Simple Efficient Load

Balancing Algorithms for Peer-to-Peer Systems," in

Proc. 16th ACM Symp. Parallel Algorithms and

Architectures (SPAA'04), June 2004, pp. 36-43.

M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Co., 1979.

D. Eastlake and P. Jones, "US Secure Hash

Algorithm 1 (SHA1)," RFC 3174, Sept. 2001.

J. W. Byers, J. Considine, and M. Mitzenmacher,

"Simple Load Balancing for Distributed Hash

Tables," in Proc. 1st Int'l Workshop Peer-to-Peer

Systems (IPTPS'03), Feb. 2003, pp. 80-87.

[CrossRef]

M. Raab and A. Steger, "Balls into Bins-A Simple

and Tight Analysis," LNCS 1518, pp. 159-170,

Oct. 1998.

M. Jelasity, A. Montresor, and O. Babaoglu,

"Gossip-Based Aggregation in Large Dynamic

Networks," ACM Trans. Comput. Syst., vol. 23,

no. 3, pp. 219-252, Aug. 2005.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.

Kermarrec, and M. V. Steen, "Gossip-Based Peer

Sampling," ACM Trans. Comput. Syst., vol. 25, no.

3, Aug. 2007.

International Journal of Innovative Research and Practices Vol.3, Issue 1, January 2015
ISSN 2321-2926

G. Jyothi Krishna and A.V.S. Pavan Kumar 19

Apache Hadoop, http://hadoop.apache.org/.

P. Ganesan, M. Bawa, and H. Garcia-Molina,

"Online Balancing of Range-Partitioned Data with

Applications to Peer-to-Peer Systems," in Proc.

13th Int'l Conf. Very Large Data Bases (VLDB'04),

Sept. 2004, pp. 444-455.

H. Abu-Libdeh, P. Costa, A. Rowstron, G. O'Shea,

and A. Donnelly, "Symbiotic Routing in Future

Data Centers," in Proc. ACM SIGCOMM' 10, Aug.

2010, pp. 51-62.

Raicu, I. T. Foster, and P. Beckman, "Making a

Case for Distributed File systems at Exascale," in

Proc. 3rd Int'l Workshop Large-Scale System and

Application Performance (LSAP'11), June 2011,

pp. 11-18.

