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1 Introduction 

Allee effect generally refers to a reduction in 
individual fitness at low population size or density 
[1]. This effect plays a very important role in the 
dynamics of populations. There are several 
mechanisms which generate Allee effect. Berec et 
al. [2] presents a classification of various Allee 
effects characterised by the nature of involved 
mechanisms. The history of Allee effect and its 
future importance has been discussed in [3]. There 
are quite a few real world examples exhibiting 
presence of Allee effects [1,4,5]. As a consequence, 
analysis of systems involving Allee effect has 
gained lot of importance in real world problems 
associated with various fields such as conservation 
biology [6,7], sustainable harvesting [8], pest 
control, biological control [9], population 
management [2], biological invasions [10], meta 
population dynamics [11,12], interacting species 
[13,14]. The review article [15] presents a 
classification of single species models that are 
subjected to various Allee effects. Most of the 
available literature deals with the influence of Allee 
effect on the system dynamics and very little is the 
associated bio-economics. In the language of bio-
economics, if the growth of a resource is 
represented by a critical depensation curve then it is 
said to exhibit strong Allee effect [16]. Bio-
economics of a resource with logistic growth or 
compensatory growth has been systematically 
developed in the literature [16,18]. Bio-economics 
of a resource in a seasonally varying environment 
has been recently presented in [17] wherein the 
growth of the resource is assumed to follow either 
logistic law or Gompertz law with periodic 
coefficients. Such comprehensive results do not 

appear to be known for resources subjected to Allee 
effect, although some results are established for 
certain specific dynamic models [8,19,20]. The 
present study deals with certain bio-economic 
aspects of a renewable resource subjected to strong 
Allee effect. The aim is to derive optimal 
exploitation strategies for the considered resource 
from sole owner perspective. 

2 Single Species Models 

Before we start discussing some fundamental 
aspects in Mathematical modelling let us recall 
some definitions and results from the theory of 
ordinary differential equations. 

A general first order initial value problem is 
given by 

 y0 = f(t,y), y(0) = y0. (1.1) 

Note that the above differential equation (1.1) is a 
non autonomous equation due to involvement of 
the (independent) variable, t, in the right hand side. 
In this entire course we are going to consider either 
first order differential equation or first order 
differential system of autonomous nature only. 
Therefore there is going to be no explicit 
involvement of the variable t in RHS. Also unless 
and otherwise stated we assume that all the ode’s 
satisfy the picard’s theorem. Hence every IVP 
admits a unique solution. 

Now let us consider the following first autonomous 
differential equation (system) 
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 . (1.2) 

We have the following definitions: 

Definition 1: All the solutions of the equation f(N) 
= 0 are called equilibrium solutions of the equation 
(1.2). These solutions are also some times called as 
equilibrium points, critical points, stationery points, 
rest points or fixed points. 

Example: x∗= 2 and x∗= 1 are two critical points of 
the DE x0 = x2 − 3x + 2. It is easy to verify that x∗= 
2 and x∗= 1 satisfy the DE x0 = x2 − 3x + 2. 

Therefore if N∗is an equilibrium solution of the 
DE N0 = f(N) then N(t) = N∗is the unique (constant) 
solution of the IVP N0 = f(N),N(t0) = N∗. 

Thus, note that the equilibrium solutions are 
special constant solutions of the associated 
differential equation. 

Definition 2: An equilibrium solution N∗of (1) is 
said to be Lyapunov stable, if for any given ² >0 
there exists a δ >0 (depending on ²) such that, for 
all initial conditions N(t0) = N0 satisfying |N0 − N∗| < 
δ, we have |N(t) − N∗| < ² for all t > t0. 
Alternatively, we say that an equilibrium solution is 
said to be stable if solutions starting close to 
equilibrium solution (in a δ neighborhood) remain 
in the its ² neighborhood for all future times. 

Definition 3: An equilibrium solution N∗of (1.2) is 

said to be asymptotically stable if • it is stable • 

if there exists a ρ >0 such that for all N0 such 

that |N0−N∗| < ρ ⇒ lim |N(t)−N∗| = 0. 

Alternatively, an equilibrium solution is said to be 
asymptotically stable if it is stable and in addition 
all solutions initiating in a ρ neighborhood of the 
equilibrium solution approach the equilibrium 
solution eventually. 

Definition 4: A solution of (1.2) is said to be 
unstable if it is not stable. 

The following theorem characterizes the 
asymptotic stability and instability of an 
equilibrium solution of (1.2). 

Theorem: Suppose that N∗is an equilibrium point 
of the differential equation N0 = f(N), where f(N) is 
assumed to be a continuously differentiable 
function with f0(N∗) 6= 0. Then the equilibrium 
point N∗is asymptotically stable if f0(N∗) <0, and 
unstable if f0(N∗) >0. 

Now, let us attempt to model dynamics of a 
single species. Let us assume that N(t) represents 
the total number of individuals in a population or 
density of a population in an environment. We 

know that the term  represents rate of change in 

the entire population while the term  
represents per capita rate of change in the 
population (change per an individual in some loose 
sense). To start with, we assume that the change in 
the population is caused due to two processes only 
and they are births and deaths. If per capita birth 
and death rates are given by b and d respectively, 
then we can represent per capita rate of change by 
the difference between the above birth and death 
rates i.e., 

  (1.14) 

By representing b − d as r the above relation can be 
alternatively presented as 

  (1.15) 

In general, r is termed as intrinsic growth rate. If 
the initial population at time t = t0 is N0 then we 
have the following initial value problem 
(mathematical model) representing the dynamics of 
the population. 

 . (1.16) 
The above model, which is called as exponential 
model or Malthusian model can be read from 
several perspectives. 

• The per capita growth rate, , is always 
constant. (Contribution due to an average 
individual is always a constant, given by r 
and this contribution does not depend on the 
density of the population. See 
equation(1.14)) 

• The growth rate of the population, , is 
always increasing (decreasing) if r >0(r 
<0). See equation (1.15) 
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The population grows (decays) exponentially from 
the initial value N0. The population will remain 
constant only when the births and deaths balance 
each other i.e., b = d or r = 0. See the IVP (10) 
whose solution is given by N(t) = N0e

rt. 

From the above observations, we understand that, 
the model describes that the contribution due to an 
individual population is independent of the 
population present and if per capita birth rate b 
exceeds corresponding death rate d the population 
blows up to ∞ exponentially else it decays to zero 
in the same fashion. Assuming that the births 
exceed deaths i.e., b−d = r >0, it is somewhat 
unrealistic to arrive at the conclusion that the 
population would blow to infty. This is due to our 
assumption that the per capita rate of change is 
independent of the total population. It is more 
realistic to assume that the per capita growth rate is 
a function of the total population and it decreases 
with the total population (understandably, as the 
population increases they have to share the limited 
food resources available. This naturally limits their 
growth.) Thus we modify our model by assuming 
that the per capita growth rate is a linearly 
decreasing function of the total population, given 
by, 

  . (1.17) 

Here, K is called as carrying capacity. This term 
represents the total number of population the 
environment can support. Observe that the per 
capita growth rate continuously reduces from r as 
the population N increases from zero and it 
becomes zero when the population reaches K. This 
seems reasonable as resources are always limited 
and the population are controlled by these 
resources. 

Taking into consideration the initial population, 
we have the following modified model to represent 
growth in a single species, called as logistic model. 

 .
 (1.18) 

Now we shall try to analyze the logistic model in 
the light of the theorem done earlier and try to 
understand the qualitative behaviour of the 
solutions of (1.18). Here, we have f(N) to be 

). Equating this term to zero we obtain 
two equilibrium points, given by N1 = 0 and 

N2 = K. Since ) we have 
f0(N1) = r >0 and f0(N2) = −r <0 indicating that the 
equilibrium solution N = 0, which is also called as 
trivial solution, is unstable while the other 
equilibrium solution N = K is asymptotically stable. 
Thus, solutions initiating in a neighborhood of K 
approaches K as t → ∞ and no solution starting in a 
small neighborhood of 0 remains close to zero in 
the future. This behaviour can be well understood 
from the following analysis. 

We have . 
Let us assume that, N0 is very close to 0. Thus, 

N2 will be much smaller and hence the term  can 
be ignored in the above model. Therefore, we have 

  (1.19) 

3 HARVEST MODELS Bifurcations and 
Break Points 

A note on bifurcations: Bifurcation theory 
basically describes the way the topological features 
of a dynamical system vary as one or more 
parameters are varied. We illustrate these variations 
through a diagram called bifurcation diagram. 
Diagrams showing branching processes that 
illustrate how the location and stability of solutions 
depend on a parameter are called bifurcation 
diagrams. Below we take four examples to 
understand some basic features of bifurcations. Let 
us take x to be the state variable and µ to be a 
parameter, which we call as bifurcation parameter. 
We intend to study the variations in the nature of 
equilibrium solutions of various differential 
equations as the parameter µ is varied. Note that a 
bifurcation value of a parameter µ is a value at 
which the qualitative nature of the flow or the 
equilibrium solution changes. 

4 Constant Rate Harvesting 

Consider the population that is growing logistically 
and at a constant rate of harvesting h. 

  (3.1) 
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Now, let us analyze the dynamics of this 
system.The equation (1) admits two equilibria 
points characterized by 

 
 (3.2) 

Let us name them as N1 and 

 

In order to find the nature of equilibrium points 
and N2,we evaluate f0(N1) and f0(N2). Suppose

 f(

Therefore, 

⇒f0(N) 

 

0 (3.6) 

and 

 

0 (3.7) 

The equilibrium point N1 is unstable whereas 
the equilibrium point N2 is asymptotically stable.
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Now, let us analyze the dynamics of this 
(1) admits two equilibria 

.

and N2, where

 and

 

In order to find the nature of equilibrium points N1 

). Suppose 

f(N) = l(N − N1(h))(N2(h) − N) 

 = l(N2(h) − N) − l(N − N1(h)) 

is unstable whereas 
is asymptotically stable. 

If suppose the harvest h = 0, then the equation 
(3.1) becomes logistic equation and admits two 
equilibria solutions N1 = 0 and N2 = 

The two equilibria will coincide only when 1 

 

 and 

That is, when , the two equilibria 
coincide and the point is called critical point.

When the harvest , then there are no 
equilibrium point and the entire system 
collapse. 

Thus there occurs a saddle node bifurcation (as 
shown in fig 2) 

The choice of harvesting h, plays a role in the 
sustaining of stock. 

If suppose the harvest is made at 
shown in fig 1), we obtain two equilibria 

If suppose the stock is to the left of 
slowly, the density of population approaches zero 
as time progresses.But if the stock is to the right of 
N1 and left of N2, the density of population 
with time approaches N2. 
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(3.4) 

(3.5) 

= 0, then the equation 
(3.1) becomes logistic equation and admits two 

= K. 

The two equilibria will coincide only when 1 

. 

, the two equilibria 
coincide and the point is called critical point. 

, then there are no 
equilibrium point and the entire system 

Thus there occurs a saddle node bifurcation (as 

 

, plays a role in the 

If suppose the harvest is made at h = h∗(as 
shown in fig 1), we obtain two equilibria N1 and N2. 

If suppose the stock is to the left of N1, then 
slowly, the density of population approaches zero 
as time progresses.But if the stock is to the right of 

, the density of population grows 
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5 Harvest models and optimal control 
theory 

In this chapter we study the interaction between 
humans and other renewable resources such as a 
fishery. Let us consider an open access fishery, by 
which we mean it is a fishery which is not 
controlled by any regulatory agency like the 
government. Any one (fisher men) can come utilize 
the resource and leave the fishery. Under such 
circumstances we wish to model the dynamics of 
the fishery and also the effort used for fishing. We 
assume that there is a cost for effort like boat hire, 
man power etc. If N(t),E(t) represent the stock and 
effort at any time t and assuming that the stock is 
governed by the logistic law in the absence of 
harvesting and that the catch is proportional to the 
effort and the stock, we have the governing 
dynamic equation for the stock to be 

 
 (12.1) 

Now let us try to derive an equation for the 
dynamics of the effort. If p stands for the price per 
unit catch and c is the cost per unit effort then at 
any time the profit or economic rent to the harvester 
is given by pqE(t)N(t) − cE(t) and the fishery 
attracts other people (effort increases) as long as the 
economic rent is positive and the effort gets 
reduced once the cost exceeds the revenue (since 
the activity would no longer be lucrative). 
Therefore the change in the effort is proportional to 
the economic rent pqE(t)N(t)−cE(t). Hence we have 
the dynamic equation for the harvest to be 

 . (12.2) 

Observe that the above coupled equation is 
similar to that of prey-predator equation with stock 
as the prey and effort as predator although the effort 
equation has a different economic interpretation. In 
the light of the analysis done for the prey-predator 
coupled systems in the previous chapters, the 
dynamics of the fishery in presence of harvesting 
can be easily understood. Suppose the revenue 
(pqK), obtained from the catch by using a unit 
effort when the resource (fishery) is at its carrying 
capacity K, is less than the cost per unit effort c, 
then obviously the fishery is not economically 
viable. Hence no one goes for fishing and existing 
activity will be withdrawn. As a result the resource 

will reach its carrying capacity and effort goes to 
zero. We can observe this dynamics from the 
system too.  

Now let us consider a sole owner fishery. Here 
the fishery is owned and regulated by a single 
individual. Here the objective of the owner is to 
maximize the (long time) profit during a time 
period [0,T]. In other words the owner wishes to 
find the harvesting strategy he/she has to implement 
during [0,T] which will maximizes the profit from 
the harvesting activity. Thus the owner’s problem is 
to derive an optimal harvesting strategy E(t),t ∈ 
[0,T] satisfying the following: 

(12.3a) 

subject to 

(12.3b) 

Expressing the above problem mathematically, 
the owner wishes to obtain a harvesting strategy 
E(t) so as to maximize the discounted net economic 
rent over the period [0,T] of his ownership. Here δ 
stands for discounting factor. This is a problem to 
be solved using optimal control theory. There are 
three problems we come across in optimal control 
theory which can be used to solve problems of the 
type mentioned above. 

Now let us take an example problem and study 
its solvability by applying the maximum 
principles. Consider the following problem: 

 
 (12.11a) 

subject to 

 .
 (12.11b) 

Observe that the above problem represents sole 
owner fishery with no costs and discounts. N(t) is 
the stock level and E(t) is effort. The Hamiltonian 
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associated with the optimal control problem is 
given by : 

 H(E,N,λ) = pqEN + λ[f(N
 (12.12a) 

alternatively 

 H = q(p − λ)EN + λf(N) (12.12b)

The associated canonical equations are:

 
 (12.13a) 
 

 (12.13b) 

Observe that the Hamiltonian H is linear in the 
control variable E(t). Thus the maximizer 
the hamiltonian satisfies 

E(t) = Emax, λ(t) < p; (12.14) 0, 
p. 

There is another possibility where λ(t
interval, I. In this case, the hamiltonian 
independent of E and this also implies that 
on I. Comparing with the canonical equations this 
requires that f0(N) be zero on I. Thus, we require a 
N which not only maximizes the Hamiltonian but 
also satisfies the condition f0(N) = 0 on 
that for the dynamic equation 

  (12.15)

with , we have the 
optimal effort E∗, MSY and the corresponding 
equilibrium N∗to be 

 
Moreover, observe that f0(N∗) = 

= 0. Thus we have NMSY

the hamiltonian and satisfying f0(N) = 0 on 
implies that, on I, the corresponding effort level 
that is required to maintain the stock at 

 . (12.16)

Now we have the following form for the 
maximizer: 

 
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with the optimal control problem is 

N) − qEN]

(12.12b) 

The associated canonical equations are: 

)

Observe that the Hamiltonian H is linear in the 
). Thus the maximizer E(t) of 

 λ(t) > 

t) = p on an 
. In this case, the hamiltonian H becomes 

and this also implies that λ0(t) = 0 
. Comparing with the canonical equations this 

. Thus, we require a 
which not only maximizes the Hamiltonian but 

) = 0 on I. Recall 

(12.15) 

, we have the 
, MSY and the corresponding 

to be 

 respectively. 

MSY
∗maximizing 

) = 0 on I. This 
, the corresponding effort level 

that is required to maintain the stock at NMSY∗ is 

(12.16) 

Now we have the following form for the 

  Emax, λ(t) < p; 

 E(t) =  EMSY
∗ λ(t) = p; 

 0, λ(t) > p. 

From the above expression for the maximizer we 
have the complete information about the optimizer 
if we have the knowledge of the costate variable 
λ(t), for which we need to solve the canonical 
equations. Now, let us consider the transversality 
condition c in the maximum 

principle. From the considered problem, we have 
= 0,t0 = 0,t1 = T,x0 = N0 and the value of the state 
at t = T is unconstrained. Thus, we have 
dt1 = dx0 = 0 and dx1 = dN(T) arbitrary. Substituting 
these in the transversality condition, we obtain 
= 0. Thus we have the following boundary value 
problem. 

 
 (12.18a) 

 
 (12.18b) 

with t ∈ [0,T],N(0) = N0,λ(T) = 0. Here, the initial 
point of the state and the final value of the costate 
variable are fixed. The end point of the state 
variable is free and λ(0) has to be chosen 
conveniently such that the unique solution of the 
BVP satisfies the given boundary cond
zero value of λ at T implies that E(T
< p. Now we need to fix the initial value of the 
costate variable, which fixes the optimal effort at 
the beginning of the plan period. 

Therefore, if N(0) > NMSY
∗

then it is possible to drive the state from 
NMSY

∗in a finite time t˜that is, N
applying maximum (minimum) possible effort. 

Looking at the equations 

with λ(T) = 0 there exists a time t = 
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 (12.17) 

From the above expression for the maximizer we 
have the complete information about the optimizer 
if we have the knowledge of the costate variable 

for which we need to solve the canonical 
equations. Now, let us consider the transversality 

 

principle. From the considered problem, we have G 
and the value of the state N 

is unconstrained. Thus, we have dG = dt0 = 
) arbitrary. Substituting 

these in the transversality condition, we obtain λ(T) 
Thus we have the following boundary value 

)

) = 0. Here, the initial 
point of the state and the final value of the costate 
variable are fixed. The end point of the state 

(0) has to be chosen 
conveniently such that the unique solution of the 
BVP satisfies the given boundary conditions. The 

T) = Emax as λ(T) 
. Now we need to fix the initial value of the 

costate variable, which fixes the optimal effort at 

MSY
∗(N(0) < NMSY

∗), 
then it is possible to drive the state from N0 to 

N(t˜) = NMSY
∗by 

applying maximum (minimum) possible effort. 

) 
= l < T such that 
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a unique solution of the system exists satisfying 

. That is, l is the time taken for the adjoint variable 
to reduce its value from p to 0 if the initial value of 
the state is at NMSY

∗. 

Now let us suppose that 0 < λ(0) < p. Hence 
Emax. Also we have f0(N0) <0. Note that 
− λf0(N) = 0 implies that N = NMSY

∗and 
view of the canonical equation for 
 

)), observe that if λ is in the positive neighborhood 

of 0 then the RHS of  will be negative as the term 
−qpE dominates. On the other hand if 

vicinity of p then the RHS of  will be positive. 
We need to choose the value of λ(0) in such a way 
that λ(T) = 0. There are two possible ways to ensure 
that λ(T) = 0. If t˜+ l > T then choose λ

to 0 so that 0 and λ(t) decreases to z
approaches T. Hence the corresponding optimal 
harvesting strategy is to apply maximum effort 
during the entire plan period. On the other hand if 
t˜+l < T, choose λ(0) so close to p so that 
(hence the corresponding harvesting effort
Emax), and from t = t˜ switch the harvesting effort to 
EMSY

∗which maintains the stock at the maximum 

sustainable yield level and parallelly 
level and switch the effort E(t) back to 

appropriate time, that is at t =T − l, so that 
negative again as a result value of λ reduces from 

to 0 by the time t reaches T. Thus, if
then the optimal effort policy is as follows:

 If T > t˜+ l then  
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stem exists satisfying 

is the time taken for the adjoint variable 
to 0 if the initial value of 

 

Hence E(0) = 
0. Note that −q(p − λ)E 

and λ = p. In 
view of the canonical equation for λ,

is in the positive neighborhood 

will be negative as the term 
dominates. On the other hand if λ is in the 

will be positive. 
(0) in such a way 

) = 0. There are two possible ways to ensure 
λ(0) so close 

) decreases to zero as t 
. Hence the corresponding optimal 

harvesting strategy is to apply maximum effort Emax 

during the entire plan period. On the other hand if 
so that λ(t˜) = P, 

(hence the corresponding harvesting effort is E(t) = 
˜ switch the harvesting effort to 

which maintains the stock at the maximum 

sustainable yield level and parallelly  at zero 
) back to Emax at an 

, so that  turns 
reduces from p 

 
then the optimal effort policy is as follows: 

else 

Emax 

E(t) =

Emax 

 E(t) = 

Similarly, if N0 < NMSY
∗it can be shown that the 

corresponding optimal harvesting strategy is as 
follows: 

If T > 
t¯+ l 
then 

 
Else 

 

This model illustrates the fundamental 
principle of renewable resources given by 
discount rates implies Less biological 
conservation. Now let us consider the case where 
the intrinsic growth rate of the resource, 
than the discount rate δ. Here f0(
solution. This suggests that the optimal solution in 
this case is to drive the source to extinction. This is 
for the simple reason that the values of the stock 
grows slower than the rate at which corresponding 
money would grow if invested in a the bank.

6 Discussion and conclusions

The optimal harvest policy is a feedback policy 
and coincides with most rapid approach path 
whenever the initial state is greater than the Allee 
threshold value of the resource. Construction of 
suboptimal approach paths is dependent on the 
stability nature of the optimal singular solution and 
the initial state of the resource. Whenever the 
optimal singular solution happens to be 
asymptotically stable and if the initial state is 
contained in its region of attraction (D), then the 
optimal singular solution can be reached 
asymptotically under constant singular harvest 
policy. If the initial state does not belong to D then 
the state has to be driven into D with appropriate 
control before the constant singular effo
implemented. If the initial state is below the Allee 
threshold value of the resource, then no admissible 
control can retain the state at a positive level. In this 
case driving the resource to extinction by 
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 t ∈ [0,t˜) 

) = EMSY
∗ t ∈ [t,T˜ − l) 

 t ∈ [T − l,T] 

) = Emax,t ∈ [0,T]. 

it can be shown that the 
corresponding optimal harvesting strategy is as 

 (12.20a) 
 

E(t) = Emax,t ∈ [0,T]. 

This model illustrates the fundamental 
principle of renewable resources given by Larger 
discount rates implies Less biological 

. Now let us consider the case where 
the intrinsic growth rate of the resource, δ is greater 

(N) = δ has no 
solution. This suggests that the optimal solution in 
this case is to drive the source to extinction. This is 
for the simple reason that the values of the stock 
grows slower than the rate at which corresponding 

vested in a the bank. 

Discussion and conclusions 

The optimal harvest policy is a feedback policy 
and coincides with most rapid approach path 
whenever the initial state is greater than the Allee 
threshold value of the resource. Construction of 

proach paths is dependent on the 
stability nature of the optimal singular solution and 
the initial state of the resource. Whenever the 
optimal singular solution happens to be 
asymptotically stable and if the initial state is 

action (D), then the 
optimal singular solution can be reached 
asymptotically under constant singular harvest 
policy. If the initial state does not belong to D then 
the state has to be driven into D with appropriate 
control before the constant singular effort can be 
implemented. If the initial state is below the Allee 
threshold value of the resource, then no admissible 
control can retain the state at a positive level. In this 
case driving the resource to extinction by 
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harvesting with maximum effort is optimal. This 
policy becomes optimal harvest policy even for the 
case where the considered control problem does not 
admit any admissible singular solutions. 
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